期刊论文详细信息
Retrovirology
The role of N-glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents
Jan Balzarini1  Leen Mathys1 
[1] Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium
关键词: N-glycans;    Envelope gp41;    HIV;    Carbohydrate-binding agents (CBAs);   
Others  :  1151758
DOI  :  10.1186/s12977-014-0107-7
 received in 2014-05-28, accepted in 2014-11-11,  发布年份 2014
PDF
【 摘 要 】

Background

Carbohydrate-binding agents (CBAs) are potent antiretroviral compounds that target the N-glycans on the HIV-1 envelope glycoproteins. The development of phenotypic resistance to CBAs by the virus is accompanied by the deletion of multiple N-linked glycans of the surface envelope glycoprotein gp120. Recently, also an N-glycan on the transmembrane envelope glycoprotein gp41 was shown to be deleted during CBA resistance development.

Results

We generated HIV-1 mutants lacking gp41 N-glycans and determined the influence of these glycan deletions on the viral phenotype (infectivity, CD4 binding, envelope glycoprotein incorporation in the viral particle and on the transfected cell, virus capture by DC-SIGN+ cells and transmission of DC-SIGN-captured virions to CD4+ T-lymphocytes) and on the phenotypic susceptibility of HIV-1 to a selection of CBAs. It was shown that some gp41 N-glycans are crucial for the infectivity of the virus. In particular, lack of an intact N616 glycosylation site was shown to result in the loss of viral infectivity of several (i.e. the X4-tropic IIIB and NL4.3 strains, and the X4/R5-tropic HE strain), but not all (i.e. the R5-tropic ADA strain) studied HIV-1 strains. In accordance, we found that the gp120 levels in the envelope of N616Q mutant gp41 strains NL4.3, IIIB and HE were severely decreased. In contrast, N616Q gp41 mutant HIV-1ADA contained gp120 levels similar to the gp120 levels in WT HIV-1ADA virus. Concomitantly deleting multiple gp41 N-glycans was often highly detrimental for viral infectivity. Using surface plasmon resonance technology we showed that CBAs have a pronounced affinity for both gp120 and gp41. However, the antiviral activity of CBAs is not dependent on the concomitant presence of all gp41 glycans. Single gp41 glycan deletions had no marked effects on CBA susceptibility, whereas some combinations of two to three gp41 glycan-deletions had a minor effect on CBA activity.

Conclusions

We revealed the importance of some gp41 N-linked glycans, in particular the N616 glycan which was shown to be absolutely indispensable for the infectivity potential of several virus strains. In addition, we demonstrated that the deletion of up to three gp41 N-linked glycans only slightly affected CBA susceptibility.

【 授权许可】

   
2014 Mathys and Balzarini; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150406103731782.pdf 2207KB PDF download
Figure 13. 17KB Image download
Figure 12. 111KB Image download
Figure 11. 11KB Image download
Figure 10. 27KB Image download
Figure 9. 20KB Image download
Figure 8. 17KB Image download
Figure 7. 26KB Image download
Figure 6. 16KB Image download
Figure 5. 20KB Image download
Figure 4. 18KB Image download
Figure 3. 31KB Image download
Figure 2. 149KB Image download
Figure 1. 6KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

【 参考文献 】
  • [1]Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN: The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 2011, 6:e23521.
  • [2]Pollack L, Atkinson PH: Correlation of glycosylation forms with position in amino acid sequence. J Cell Biol 1983, 97:293-300.
  • [3]van Anken E, Sanders RW, Liscaljet IM, Land A, Bontjer I, Tillemans S, Nabatov AA, Paxton WA, Berkhout B, Braakman I: Only five of 10 strictly conserved disulfide bonds are essential for folding and eight for function of the HIV-1 envelope glycoprotein. Mol Biol Cell 2008, 19:4298-4309.
  • [4]Cheng-Mayer C, Brown A, Harouse J, Luciw PA, Mayer AJ: Selection for neutralization resistance of the simian/human immunodeficiency virus SHIVSF33A variant in vivo by virtue of sequence changes in the extracellular envelope glycoprotein that modify N-linked glycosylation. J Virol 1999, 73:5294-5300.
  • [5]Chackerian B, Rudensey LM, Overbaugh J: Specific N-linked and O-linked glycosylation modifications in the envelope V1 domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies. J Virol 1997, 71:7719-7727.
  • [6]Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM: Antibody neutralization and escape by HIV-1. Nature 2003, 422:307-312.
  • [7]Balzarini J: Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat Rev Microbiol 2007, 5:583-597.
  • [8]Balzarini J, Van Laethem K, Hatse S, Froeyen M, Peumans W, Van Damme E, Schols D: Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutic concept to hit the achilles heel of HIV. J Biol Chem 2005, 280:41005-41014.
  • [9]Huskens D, Van Laethem K, Vermeire K, Balzarini J, Schols D: Resistance of HIV-1 to the broadly HIV-1-neutralizing, anti-carbohydrate antibody 2G12. Virology 2007, 360:294-304.
  • [10]Balzarini J, Van Laethem K, Daelemans D, Hatse S, Bugatti A, Rusnati M, Igarashi Y, Oki T, Schols D: Pradimicin A, a carbohydrate-binding nonpeptidic lead compound for treatment of infections with viruses with highly glycosylated envelopes, such as human immunodeficiency virus. J Virol 2007, 81:362-373.
  • [11]Mathys L, Balzarini J: Exposure of HIV-1 to a combination of two carbohydrate-binding agents markedly delays drug resistance development and selects for virus strains with compromised fitness. J Antimicrob Chemother 2014, 69:582-593.
  • [12]Balzarini J, Van Laethem K, Hatse S, Vermeire K, De Clercq E, Peumans W, Van Damme E, Vandamme AM, Bolmstedt A, Schols D: Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins. J Virol 2004, 78:10617-10627.
  • [13]Balzarini J, Van Laethem K, Hatse S, Froeyen M, Van Damme E, Bolmstedt A, Peumans W, De Clercq E, Schols D: Marked depletion of glycosylation sites in HIV-1 gp120 under selection pressure by the mannose-specific plant lectins of Hippeastrum hybrid and Galanthus nivalis. Mol Pharmacol 2005, 67:1556-1565.
  • [14]Hu Q, Mahmood N, Shattock RJ: High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization. Virology 2007, 368:145-154.
  • [15]Huang X, Jin W, Hu K, Luo S, Du T, Griffin GE, Shattock RJ, Hu Q: Highly conserved HIV-1 gp120 glycans proximal to CD4-binding region affect viral infectivity and neutralizing antibody induction. Virology 2012, 423:97-106.
  • [16]Lee WR, Yu XF, Syu WJ, Essex M, Lee TH: Mutational analysis of conserved N-linked glycosylation sites of human immunodeficiency virus type 1 gp41. J Virol 1992, 66:1799-1803.
  • [17]Dedera DA, Gu RL, Ratner L: Role of asparagine-linked glycosylation in human immunodeficiency virus type 1 transmembrane envelope function. Virology 1992, 187:377-382.
  • [18]Wang W, Nie J, Prochnow C, Truong C, Jia Z, Wang S, Chen XS, Wang Y: A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology 2013, 10:14. BioMed Central Full Text
  • [19]Perrin C, Fenouillet E, Jones IM: Role of gp41 glycosylation sites in the biological activity of human immunodeficiency virus type 1 envelope glycoprotein. Virology 1998, 242:338-345.
  • [20]Dash B, McIntosh A, Barrett W, Daniels R: Deletion of a single N-linked glycosylation site from the transmembrane envelope protein of human immunodeficiency virus type 1 stops cleavage and transport of gp160 preventing env-mediated fusion. J Gen Virol 1994, 75(Pt 6):1389-1397.
  • [21]Hoorelbeke B, Huskens D, Ferir G, Francois KO, Takahashi A, Van Laethem K, Schols D, Tanaka H, Balzarini J: Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob Agents Chemother 2010, 54:3287-3301.
  • [22]Balzarini J, Francois KO, Van Laethem K, Hoorelbeke B, Renders M, Auwerx J, Liekens S, Oki T, Igarashi Y, Schols D: Pradimicin S, a highly soluble nonpeptidic small-size carbohydrate-binding antibiotic, is an anti-HIV drug lead for both microbicidal and systemic use. Antimicrob Agents Chemother 2010, 54:1425-1435.
  • [23]Los Alamos National Laboratory HIV Sequence Database. [http://www.hiv.lanl.gov]
  • [24]Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, Ramirez A, Derking R, van Gils MJ, Liang CH, Mcbride R, von Bredow B, Shivatare SS, Wu CY, Chan-Hui PY, Liu Y, Feizi T, Zwick MB, Koff WC, Seaman MS, Swiderek K, Moore JP, Evans D, Paulson JC, Wong CH, Ward AB, Wilson IA, Sanders RW, Poignard P, Burton DR: Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 2014, 40:657-668.
  • [25]Geijtenbeek TB, Kwon DS, Torensma R, Van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, Kewalramani VN, Littman DR, Figdor CG, van Kooyk Y: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100:587-597.
  • [26]Princen K, Hatse S, Vermeire K, De Clercq E, Schols D: Establishment of a novel CCR5 and CXCR4 expressing CD4+ cell line which is highly sensitive to HIV and suitable for high-throughput evaluation of CCR5 and CXCR4 antagonists. Retrovirology 2004, 1:2. BioMed Central Full Text
  • [27]Terwilliger E, Proulx J, Sodroski J, Haseltine WA: Cell lines that express stably env gene products from three strains of HIV-1. J Acquir Immune Defic Syndr 1988, 1:317-323.
  • [28]Rosen CA, Sodroski JG, Campbell K, Haseltine WA: Construction of recombinant murine retroviruses that express the human T-cell leukemia virus type II and human T-cell lymphotropic virus type III trans activator genes. J Virol 1986, 57:379-384.
  • [29]Weber J, Weberova J, Carobene M, Mirza M, Martinez-Picado J, Kazanjian P, Quinones-Mateu ME: Use of a novel assay based on intact recombinant viruses expressing green (EGFP) or red (DsRed2) fluorescent proteins to examine the contribution of pol and env genes to overall HIV-1 replicative fitness. J Virol Methods 2006, 136:102-117.
  • [30]Auwerx J, Francois KO, Covens K, Van Laethem K, Balzarini J: Glycan deletions in the HIV-1 gp120 V1/V2 domain compromise viral infectivity, sensitize the mutant virus strains to carbohydrate-binding agents and represent a specific target for therapeutic intervention. Virology 2008, 382:10-19.
  • [31]Van Laethem K, Schrooten Y, Lemey P, Van Wijngaerden E, De Wit S, Van Ranst M, Vandamme AM: A genotypic resistance assay for the detection of drug resistance in the human immunodeficiency virus type 1 envelope gene. J Virol Methods 2005, 123:25-34.
  • [32]Francois KO, Balzarini J: The highly conserved glycan at asparagine 260 of HIV-1 gp120 is indispensable for viral entry. J Biol Chem 2001, 286:42900-42910.
  • [33]Abacioglu YH, Fouts TR, Laman JD, Claassen E, Pincus SH, Moore JP, Roby CA, Kamin-Lewis R, Lewis GK: Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS Res Hum Retroviruses 1994, 10:371-381.
  • [34]Mathys L, Francois KO, Quandte M, Braakman I, Balzarini J: Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity. PLoS One 2014, 9:e101181.
  文献评价指标  
  下载次数:26次 浏览次数:14次