期刊论文详细信息
Particle and Fibre Toxicology
Molecular characterization of the hexose transporter gene in benznidazole resistant and susceptible populations of Trypanosoma cruzi
Silvane M F Murta1  Alvaro J Romanha1  Guilherme Oliveira2  Edson L Folador1  Antônio M Rezende1  Douglas S Moreira1  Rodrigo P P Soares1  Jerônimo C Ruiz1  Paula F dos Santos1 
[1] Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil;Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-910, MG, Brazil
关键词: Hexose transporters;    Drug resistance;    Trypanosoma cruzi;   
Others  :  1231727
DOI  :  10.1186/1756-3305-5-161
 received in 2012-03-26, accepted in 2012-08-02,  发布年份 2012
PDF
【 摘 要 】

Background

Hexose transporters (HT) are membrane proteins involved in the uptake of energy-supplying glucose and other hexoses into the cell. Previous studies employing the Differential Display technique have shown that the transcription level of the HT gene from T. cruzi (TcrHT) is higher in an in vitro-induced benznidazole (BZ)-resistant population of the parasite (17 LER) than in its susceptible counterpart (17 WTS).

Methods

In the present study, TcrHT has been characterized in populations and strains of T. cruzi that are resistant or susceptible to BZ. We investigated the copy number and chromosomal location of the gene, the levels of TcrHT mRNA and of TcrHT activity, and the phylogenetic relationship between TcrHT and HTs from other organisms.

Results

In silico analyses revealed that 15 sequences of the TcrHT gene are present in the T. cruzi genome, considering both CL Brener haplotypes. Southern blot analyses confirmed that the gene is present as a multicopy tandem array and indicated a nucleotide sequence polymorphism associated to T. cruzi group I or II. Karyotype analyses revealed that TcrHT is located in two chromosomal bands varying in size from 1.85 to 2.6 Mb depending on the strain of T. cruzi. The sequence of amino acids in the HT from T. cruzi is closely related to the HT sequences of Leishmania species according to phylogenetic analysis. Northern blot and quantitative real-time reverse transcriptase polymerase chain reaction analyses revealed that TcrHT transcripts are 2.6-fold higher in the resistant 17 LER population than in the susceptible 17 WTS. Interestingly, the hexose transporter activity was 40% lower in the 17 LER population than in all other T. cruzi samples analyzed. This phenotype was detected only in the in vitro-induced BZ resistant population, but not in the in vivo-selected or naturally BZ resistant T. cruzi samples. Sequencing analysis revealed that the amino acid sequences of the TcrHT from 17WTS and 17LER populations are identical. This result suggests that the difference in glucose transport between 17WTS and 17LER populations is not due to point mutations, but probably due to lower protein expression level.

Conclusion

The BZ resistant population 17 LER presents a decrease in glucose uptake in response to drug pressure.

【 授权许可】

   
2012 dos Santos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151110101122235.pdf 1782KB PDF download
Figure 6. 105KB Image download
Figure 5. 29KB Image download
Figure 4. 33KB Image download
Figure 3. 28KB Image download
Figure 2. 17KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Chagas disease (American trypanosomiasis), Fact sheet N°340. , ; 2010. Available from: http://www.who.int/mediacentre/factsheets/fs340/en/index.html webcite (Accessed June 2011)
  • [2]Cançado JR: Long term evaluation of etiological treatment of Chagas disease with benznidazole. Rev Inst Med Trop São Paulo 2002, 44:29-37.
  • [3]Pérez-Molina JA, Perez-Ayala A, Moreno S, Fernandez-Gonzalez MC, Zamora J, Lopez-Velez R: Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis. J Antimicrob Chemother 2009, 64:1139-1147.
  • [4]Viotti R, Vigliano C, Lococo B, Alvarez MG, Petti M, Bertocchi G, et al.: Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev Anti Infect Ther 2009, 7:157-163.
  • [5]Brener Z, Costa CA, Chiari C: Differences in the susceptibility of Trypanosoma cruzi strains to active chemotherapeutic agents. Rev Inst Med Trop São Paulo 1976, 18:450-455.
  • [6]Filardi LS, Brener Z: Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg 1987, 81:755-759.
  • [7]Murta SM, Gazzinelli RT, Brener Z, Romanha AJ: Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biochem Parasitol 1998, 93:203-214.
  • [8]Toledo MJ, Bahia MT, Veloso VM, Carneiro CM, Machado-Coelho GL, Alves CF, et al.: Effects of specific treatment on parasitological and histopathological parameters in mice infected with different Trypanosoma cruzi clonal genotypes. J Antimicrob Chemother 2004, 53:1045-1053.
  • [9]Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I: A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA 2008, 105:5022-5027.
  • [10]Brener Z, Andrade Z, Barral-Neto M: Tratamento etiológico da doença de Chagas pelo benzonidazol. In Trypanosoma cruzi e Doença de Chagas. 2nd edition. Edited by Brener Z, Andrade Z, Barral-Neto M. Guanabara Koogan, Rio de Janeiro; 2000:389-405.
  • [11]Murta SM, Nogueira FB, Dos Santos PF, Campos FM, Volpe C, Liarte DB, et al.: Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Trop 2008, 107:59-65.
  • [12]Tetaud E, Bringaud F, Chabas S, Barrett MP, Baltz T: Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci USA 1994, 91:8278-8282.
  • [13]Mueckler M: Facilitative glucose transporters. Eur J Biochem. 1994, 219:713-725.
  • [14]Barrett MP, Tetaud E, Seyfang A, Bringaud F, Baltz T: Trypanosome glucose transporters. Mol Biochem Parasitol 1998, 91:195-205.
  • [15]Joët T, Eckstein-Ludwig U, Morin C, Krishna S: Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci USA 2003, 100:7476-7479.
  • [16]Rodriguez-Contreras D, Landfear SM: Metabolic changes in glucose transporter-deficient Leishmania mexicana and parasite virulence. J Biol Chem 2006, 281:20068-20076.
  • [17]Feistel T, Hodson CA, Peyton DH, Landfear SM: An expression system to screen for inhibitors of parasite glucose transporters. Mol Biochem Parasitol 2008, 162:71-76.
  • [18]Tetaud E, Chabas S, Giroud C, Barrett MP, Baltz T: Hexose uptake in Trypanosoma cruzi: structure-activity relationship between substrate and transporter. Biochem J 1996, 317:353-359.
  • [19]Murta SM, Romanha AJ: In vivo selection of a population of Trypanosoma cruzi and clones resistant to benznidazole. Parasitology 1998, 116:165-171.
  • [20]Nirdé P, Larroque C, Barnabe C: Drug-resistant epimastigotes of Trypanosoma cruzi and persistence of this phenotype after differentiation into amastigotes. Comp Rend Acad Sci 1995, 318:1239-1244.
  • [21]Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al.: A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 2009, 104:1051-1054.
  • [22]Camargo EP: Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo 1964, 6:93-100.
  • [23]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39:W29-W37.
  • [24]El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al.: The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309:409-415.
  • [25]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:8.
  • [26]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.
  • [27]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [28]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 19928:275-282.
  • [29]Felsenstein J: Phylip. , ; 2009. http://evolution.genetics.washington.edu/phylip.html webcite
  • [30]Nogueira FB, Krieger MA, Nirde P, Goldenberg S, Romanha AJ, Murta SM: Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Trop 2006, 100:119-132.
  • [31]Murta SM, Krieger MA, Montenegro LR, Campos FF, Probst CM, Avila AR, et al.: Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol Biochem Parasitol 2006, 146:151-162.
  • [32]Eisenthal R, Game S, Holman GD: Specificity and kinetics of hexose transport in Trypanosoma brucei. Biochim Biophys Acta 1989, 985:81-89.
  • [33]Arner E, Kindlund E, Nilsson D, Farzana F, Ferella M, Tammi MT, et al.: Database of Trypanosoma cruzi repeated genes: 20,000 additional gene variants. BMC Genomics 2007, 8:391. BioMed Central Full Text
  • [34]Myler PJ: Searching the TriTryp genomes for drug targets. Adv Exp Med Biol 2008, 625:133-140.
  • [35]Weatherly DB, Boehlke C, Tarleton RL: Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 2009, 10:255. BioMed Central Full Text
  • [36]Nozaki T, Cross GA: Effects of 3′ untranslated and intergenic regions on gene expression in Trypanosoma cruzi. Mol Biochem Parasitol 1995, 75:55-67.
  • [37]Teixeira SM, Kirchhoff LV, Donelson JE: Post-transcriptional elements regulating expression of mRNAs from the amastin/tuzin gene cluster of Trypanosoma cruzi. J Biol Chem 1995, 270:22586-22594.
  • [38]Vanhame L, Pays E: Control of gene expression in Trypanosomes. Microbiol 1995, 59:223-240.
  • [39]Goldenberg S, Avila AR: Aspects of Trypanosoma cruzi stage differentiation. Adv Parasitol 2011, 75:285-305.
  • [40]Di Noia JM, D’Orso I, Sánchez DO, Frasch AC: AU-rich elements in the 3'-untranslated region of a new mucin-type gene family of Trypanosoma cruzi confers mRNA instability and modulates translation efficiency. J Biol Chem 2000, 275:10218-10227.
  • [41]D’Orso I, Frasch AC: TcUBP-1, a developmentally regulated U-rich RNA-binding protein involved in selective mRNA destabilization in trypanosomes. J Biol Chem 2001, 276:34801-34809.
  • [42]da Silva RA, Bartholomeu DC, Teixeira SM: Control mechanisms of tubulin gene expression in Trypanosoma cruzi. Int J Parasitol 2006, 36:87-96.
  • [43]Avila AR, Yamada-Ogatta SF, da Silva Monteiro V, Krieger MA, Nakamura CV, de Souza W, Goldenberg S: Cloning and characterization of the metacyclogenin gene, which is specifically expressed during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 2001, 117:169-177.
  • [44]Rego JV, Murta SMF, Nirdé P, Nogueira FB, Andrade HM, Romanha AJ: Trypanosoma cruzi: Characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Exp Parasitol 2008, 118:111-117.
  • [45]Nourani A, Wesolowski-Louvel M, Delaveau T, Jacq C, Delahodde A: Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 1997, 17:5453-5460.
  • [46]Uzcategui NL, Figarella K, Camacho N, Ponte-Sucre A: Substrate preferences and glucose uptake in glibenclamide-resistant Leishmania parasites. Comp Biochem Physiol C Toxicol Pharmacol 2005, 140:395-402.
  • [47]Machuca C, Rodriguez A, Herrera M, Silva S, Ponte-Sucre A: Leishmania amazonensis: metabolic adaptations induced by resistance to an ABC transporter blocker. Exp Parasitol 2006, 114:1-9.
  • [48]Villarreal D, Nirde P, Hide M, Barnabe C, Tibayrenc M: Differential gene expression in benznidazole-resistant Trypanosoma cruzi parasites. Antimicrob Agents Chemother 2005, 49:2701-2709.
  • [49]Murta SMF, Ropert C, Alves RO, Gazzinelli RT, Romanha AJ: In vivo treatment with benznidazole enhances phagocytosis, parasite destruction and cytokine release by macrophages during infection with a drug-susceptible but not with a derived drug-resistant Trypanosoma cruzi population. Parasite Immunol 1999, 21:535-544.
  • [50]Campos FM, Liarte DB, Mortara RA, Romanha AJ, Murta SM: Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and -resistant populations of Trypanosoma cruzi. Acta Trop 2009, 111:56-63.
  • [51]Ferguson MA: The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999, 112:2799-2809.
  文献评价指标  
  下载次数:0次 浏览次数:9次