期刊论文详细信息
Movement Ecology
Space, time and complexity in plant dispersal ecology
Luis Santamaría2  Helene C Muller-Landau3  Etienne K Klein1  Juan J Robledo-Arnuncio4 
[1] INRA, UR546 Biostatistique et Processus Spatiaux (BioSP), Avignon, France;Spatial Ecology Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain;Smithsonian Tropical Research Institute, Panamá, Apartado Postal 0843-03092, Republica de Panamá;Department of Forest Ecology & Genetics, INIA-CIFOR, Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
关键词: Climate change;    Community ecology;    Long-distance dispersal;    Migration;    Dispersal kernel;    Gene flow;    Pollen;    Seed;   
Others  :  1171080
DOI  :  10.1186/s40462-014-0016-3
 received in 2014-05-05, accepted in 2014-07-24,  发布年份 2014
PDF
【 摘 要 】

Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological and evolutionary consequences. Interest in plant dispersal has increased with concerns about the persistence of populations and species under global change. We argue here that advances in plant dispersal ecology research will be determined by our ability to surmount challenges of spatiotemporal scales and heterogeneities and ecosystem complexity. Based on this framework, we propose a selected set of research questions, for which we suggest some specific objectives and methodological approaches. Reviewed topics include multiple vector contributions to plant dispersal, landscape-dependent dispersal patterns, long-distance dispersal events, spatiotemporal variation in dispersal, and the consequences of dispersal for plant communities, populations under climate change, and anthropogenic landscapes.

【 授权许可】

   
2014 Robledo-Arnuncio et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150418084831494.pdf 611KB PDF download
Figure 1. 93KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Dispersal Ecology and Evolution. Oxford University Press, Oxford; 2012.
  • [2]Cousens R, Dytham C, Law R: Dispersal in Plants: A Population Perspective. Oxford University Press, Oxford; 2008.
  • [3]Higgins SI, Nathan R, Cain ML: Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 2003, 84:1945-1956.
  • [4]Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A: Mechanisms of long-distance seed dispersal. Trends Ecol Evol 2008, 23:638-647.
  • [5]Culley TM, Weller SG, Sakai AK: The evolution of wind pollination in angiosperms. Trends Ecol Evol 2002, 17:361-369.
  • [6]Bascompte J, Jordano P: Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 2007, 38:567-593.
  • [7]Vittoz P, Engler R: Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helv 2007, 117:109-124.
  • [8]Thomson FJ, Moles AT, Auld TD, Ramp D, Ren S, Kingsford RT: Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J Ecol 2010, 98:1310-1318.
  • [9]Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, Partel M: Predicting species¿ maximum dispersal distances from simple plant traits. Ecology 2014, 95:505-513.
  • [10]Nathan R, Katul GG: Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc Natl Acad Sci U S A 2005, 102:8251-8256.
  • [11]Nathan R: Long-distance dispersal of plants. Science 2006, 313:786-788.
  • [12]Siljamo P, Sofiev M, Severova E, Ranta H, Kukkonen J, Polevova S, Kubin E, Minin A: Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia (Bologna) 2008, 24:211-230.
  • [13]Varis S, Pakkanen A, Galofré A, Pulkkinen P: The extent of south¿north pollen transfer in Finnish Scots pine. Silva Fenn 2009, 43:717-726.
  • [14]Bullock JM, Clarke RT: Long distance seed dispersal: measuring and modelling the tail of the curve. Oecologia 2000, 124:506-521.
  • [15]Ribbens E, Silander JA, Pacala SW: Seedling recruitment in forests: Calibrating models to predict patterns of tree seedling dispersion. Ecology 1994, 75:1794-1806.
  • [16]Tufto J, Engen S, Hindar K: Stochastic dispersal processes in plant populations. Theor Popul Biol 1997, 52:16-26.
  • [17]Klein EK, Lavigne C, Foueillassar X, Gouyon P-H, Larédo C: Corn pollen dispersal: quasi-mechanistic models and field experiments. Ecol Monogr 2003, 73:131-150.
  • [18]Robledo-Arnuncio JJ, Garcia C: Estimation of the seed dispersal kernel from exact identification of source plants. Mol Ecol 2007, 16:5098-5109.
  • [19]Jones FA, Muller-Landau HC: Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J Ecol 2008, 96:642-652.
  • [20]Jordano P, García C, Godoy JA, García-Castaño JL: Differential contribution of frugivores to complex seed dispersal patterns. Proc Natl Acad Sci U S A 2007, 104:3278-3282.
  • [21]Spiegel O, Nathan R: Incorporating dispersal distance into the disperser effectiveness framework: frugivorous birds provide complementary dispersal to plants in a patchy environment. Ecol Lett 2007, 10:718-728.
  • [22]Dennis AJ, Westcott DA: Estimating dispersal kernels produced by a diverse community of vertebrates. In Seed Dispersal: Theory and its Application in a Changing World. Edited by Dennis AJ, Schupp EW, Green RA, Westcott DA. CABI Publ, Wallinford, UK; 2007:201-228.
  • [23]González-Varo JP, Arroyo JM, Jordano P: Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies.Methods Ecol Evol 2014, ?:?. doi:10.111/2041¿210X.12212.
  • [24]Chifflet R, Klein EK, Lavigne C, Le Feon V, Ricroch AE, Lecomte J, Vaissiere BE: Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. J Appl Ecol 2011, 48:689-696.
  • [25]Nathan R, Sapir N, Trakhtenbrot A, Katul GG, Bohrer G, Otte M, Avissar R, Soons MB, Horn HS, Wikelski M, Levin SA: Long-distance biological transport processes through the air: can nature¿s complexity be unfolded in silico? Divers Distrib 2005, 11:131-137.
  • [26]Nathan R, Safriel UN, Noy-Meir I: Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology 2001, 82:374-388.
  • [27]Andersen M: Mechanistic models for the seed shadows of wind-dispersed plants. Am Nat 1991, 137:476-497.
  • [28]Greene DF, Johnson EA: A model of wind dispersal of winged or plumed seeds. Ecology 1989, 70:339-347.
  • [29]Cresswell JE, Bassom AP, Bell SA, Collins SJ, Kelly TB: Predicted pollen dispersal by honey-bees and three species of bumble-bees foraging on oil-seed rape: a comparison of three models. Funct Ecol 1995, 9:829-841.
  • [30]Soubeyrand S, Roques L, Coville J, Fayard J: Patchy patterns due to group dispersal. J Theor Biol 2011, 271:87-99.
  • [31]Clark CJ, Poulsen JR, Bolker BM, Connor EF, Parker VT: Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 2005, 86:2684-2694.
  • [32]Wang BC, Smith TB: Closing the seed dispersal loop. Trends Ecol Evol 2002, 17:379-385.
  • [33]Levin SA, Muller-Landau HC, Nathan R, Chave J: The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Syst 2003, 34:575-604.
  • [34]Muller-Landau HC, Hardesty BD: Seed dispersal of woody plants in tropical forests: concepts, examples, and future directions. In Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity. Edited by Burslem DFRP, Pinard MA, Hartley S. Cambridge University Press, Cambridge; 2005:267-309.
  • [35]Oddou-Muratorio S, Klein EK, Austerlitz F: Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent ¿ offspring analysis. Mol Ecol 2005, 14:4441-4452.
  • [36]Nathan R, Muller-Landau HC: Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 2000, 15:278-285.
  • [37]Wright SJ, Trakhtenbrot A, Bohrer G, Detto M, Katul GG, Horvitz N, Muller-Landau HC, Jones FA, Nathan R: Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proc Natl Acad Sci U S A 2008, 105:19084-19089.
  • [38]Hardy OJ, González-Martínez SC, Colas B, Fréville H, Mignot A, Olivieri I: Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae). II. Correlated paternity within and among sibships. Genetics 2004, 168:1601-1614.
  • [39]Wenny DG: Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol Ecol Res 2001, 3:51-74.
  • [40]Tackenberg O: Modeling long-distance dispersal of plant diaspores by wind. Ecol Monogr 2003, 73:173-189.
  • [41]Santamaría L, Rodríguez-Pérez J, Larrinaga AR, Pias B: Predicting spatial patterns of plant recruitment using animal-displacement kernels. PLoS One 2007, 2:e1008.
  • [42]Trakhtenbrot A, Katul GG, Nathan R: Mechanistic modeling of seed dispersal by wind over hilly terrain. Ecol Modell 2014, 274:29-40.
  • [43]Murray KG: Avian seed dispersal of three neotropical gap-dependent plants. Ecol Monogr 1988, 58:271-298.
  • [44]Puerta-Piñero C, Muller-Landau HC, Calderón O, Wright SJ: Seed arrival in tropical forest treefall gaps. Ecology 2013, 94:1552-1562.
  • [45]Kuparinen A: Mechanistic models for wind dispersal. Trends Plant Sci 2006, 11:296-301.
  • [46]Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R: Effects of canopy heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 2008, 96:569-580.
  • [47]Pounden E, Greene DF, Quesada M, Contreras Sanchez JM: The effect of collisions with vegetation elements on the dispersal of winged and plumed seeds. J Ecol 2008, 96:591-598.
  • [48]DiLeo MF, Siu JC, Rhodes MK, López-Villalobos A, Redwine A, Ksiazek K, Dyer RJ: The gravity of pollination: integrating at-site features into spatial analysis of contemporary pollen movement. Mol Ecol 2014.
  • [49]Schurr FM, Bond WJ, Midgley GF, Higgins SI: A mechanistic model for secondary seed dispersal by wind and its experimental validation. J Ecol 2005, 93:1017-1028.
  • [50]Rodríguez-Pérez J, Wiegand T, Santamaría L: Frugivore behavior determines plant distribution: a spatially explicit analysis of a plant-disperser interaction. Ecography (Cop) 2012, 35:113-123.
  • [51]Cresswell JE, Osborne JL: The effect of patch size and separation on bumblebee foraging in oilseed rape: implications for gene flow. J Appl Ecol 2004, 41:539-546.
  • [52]Vander Wall SB: Dispersal of singleleaf piñon pine (Pinus monophylla) by seed-caching rodents. J Mammal 1997, 78:181-191.
  • [53]Pflüger FJ, Balkenhol N: A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 2014, 23:2146-2156.
  • [54]Schurr FM, Steinitz O, Nathan R: Plant fecundity and seed dispersal in spatially heterogeneous environments: models, mechanisms and estimation. J Ecol 2008, 96:628-641.
  • [55]Morales JM, Carlo TA: The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology 2006, 87:1489-1496.
  • [56]Russo SE, Portnoy S, Augspurger CK: Incorporating animal behavior into seed dispersal models: implications for seed shadows. Ecology 2006, 87:3160-3174.
  • [57]Hickey J, Flynn R, Buskirk S, Gerow K, Willson M: An evaluation of a mammalian predator, Martes americana, as a disperser of seeds. Oikos 1999, 87:499-508.
  • [58]Holbrook KM, Smith TB: Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest. Oecologia 2000, 125:249-257.
  • [59]Westcott DA, Bentrupperbaumer J, Bradford MG, McKeown A: Incorporating patterns of disperser behaviour into models of seed dispersal and its effects on estimated dispersal curves. Oecologia 2005, 146:57-67.
  • [60]Dodge S, Bohrer G, Weinzierl R, Davidson SC, Kays R, Douglas D, Cruz S, Han J, Brandes D, Wikelski M: The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Mov Ecol 2013, 1:3.
  • [61]Guttal V, Bartumeus F, Hartvigsen G, Nevai A: Retention time variability as a mechanism for animal mediated long-distance dispersal. PLoS One 2011, 6:e28447.
  • [62]Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE: A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 2008, 105:19052-19059.
  • [63]Côrtes MC, Uriarte M: Integrating frugivory and animal movement: a review of the evidence and implications for scaling seed dispersal. Biol Rev 2013, 88:255-272.
  • [64]Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J: State-space models of individual animal movement. Trends Ecol Evol 2008, 23:87-94.
  • [65]Smouse PE, Focardi S, Moorcroft PR, Kie JG, Forester JD, Morales JM: Stochastic modelling of animal movement. Philos Trans R Soc Lond B Biol Sci 2010, 365:2201-2211.
  • [66]Levin DA, Kerster HW, Niedzlek M: Pollinator flight directionality and its effect on pollen flow. Evolution (N Y) 1971, 25:113-118.
  • [67]Pyke GH: Optimal foraging: movement patterns of bumblebees between inflorescences. Theor Popul Biol 1978, 13:72-98.
  • [68]Wagner S, Wälder K, Ribbens E, Zeibig A: Directionality in fruit dispersal models for anemochorous forest trees. Ecol Modell 2004, 179:487-498.
  • [69]Austerlitz F, Dutech C, Smouse PE, Davis F, Sork VL: Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity (Edinb) 2007, 99:193-204.
  • [70]Ahmed S, Compton SG, Butlin RK, Gilmartin PM: Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc Natl Acad Sci U S A 2009, 106:20342-20347.
  • [71]Wälder K, Näther W, Wagner S: Improving inverse model fitting in trees¿anisotropy, multiplicative effects, and Bayes estimation. Ecol Modell 2009, 220:1044-1053.
  • [72]Katul GG, Porporato A, Nathan R, Siqueira M, Soons MB, Poggi D, Horn HS, Levin SA: Mechanistic analytical models for long-distance seed dispersal by wind. Am Nat 2005, 166:368-381.
  • [73]Van Putten B, Visser MD, Muller-Landau HC, Jansen PA: Distorted-distance models for directional dispersal: a general framework with application to a wind-dispersed tree. Methods Ecol Evol 2012, 3:642-652.
  • [74]Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S: Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 2012, 15:378-392.
  • [75]Kramer AT, Ison JL, Ashley MV, Howe HF: The paradox of forest fragmentation genetics. Conserv Biol 2008, 22:878-885.
  • [76]Sauer JD: Plant Migration: The Dynamics of Geographic Patterning in Seed Plant Species. University of California Press, Berkeley and Los Angeles; 1988.
  • [77]Muñoz J, Felicísimo AM, Cabezas F, Burgaz AR, Martínez I: Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 2004, 304:1144-1147.
  • [78]Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK: Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol 2012, 27:47-56.
  • [79]Thornton IWB: Krakatau: The Destruction and Reassembly of an Island Ecosystem. Harvard University Press, Cambridge, Massachusetts; 1997.
  • [80]Alsos IG, Eidesen PB, Ehrich D, Skrede I, Westergaard K, Jacobsen GH, Landvik JY, Taberlet P, Brochmann C: Frequent long-distance plant colonization in the changing Arctic. Science 2007, 316:1606-1609.
  • [81]Beerli P, Felsenstein J: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 2001, 98:4563-4568.
  • [82]Nielsen R, Wakeley J: Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 2001, 158:885-896.
  • [83]Beerli P: Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 2004, 13:827-836.
  • [84]Slatkin M: Seeing ghosts: the effect of unsampled populations on migration rates estimated for sampled populations. Mol Ecol 2005, 14:67-73.
  • [85]Nichols RA, Hewitt GM: The genetic consequences of long distance dispersal during colonization. Heredity (Edinb) 1994, 72:312-317.
  • [86]Ibrahim KM, Nichols RA, Hewitt GM: Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity (Edinb) 1996, 77:282-291.
  • [87]Le Corre V, Machon N, Petit RJ, Kremer A: Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in forest trees: a simulation study. Genet Res 1997, 69:117-125.
  • [88]Austerlitz F, Garnier-Géré P: Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: interaction of life cycle, pollen flow and seed long-distance dispersal. Heredity (Edinb) 2003, 90:282-290.
  • [89]Bialozyt R, Ziegenhagen B, Petit RJ: Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J Evol Biol 2006, 19:12-20.
  • [90]Fayard J, Klein EK, Lefèvre F: Long distance dispersal and the fate of a gene from the colonization front. J Evol Biol 2009, 22:2171-2182.
  • [91]Aeschbacher S, Futschik A, Beaumont MA: Approximate Bayesian computation for modular inference problems with many parameters: the example of migration rates. Mol Ecol 2013, 22:987-1002.
  • [92]Ray N, Excoffier L: A first step towards inferring levels of long-distance dispersal during past expansions. Mol Ecol Resour 2010, 10:902-914.
  • [93]Sousa V, Hey J: Understanding the origin of species with genome-scale data: modelling gene flow. Nat Rev Genet 2013, 14:404-414.
  • [94]Petit RJ, Kremer A, Wagner DB: Finite island model for organelle and nuclear genes in plants. Heredity (Edinb) 1993, 71:630-641.
  • [95]Ennos RA: Estimating the relative rates of pollen and seed migration among plant populations. Heredity (Edinb) 1994, 72:250-259.
  • [96]Nathan R, Klein EK, Robledo-Arnuncio JJ, Revilla E: Dispersal kernels. In Dispersal Ecol Evol. Edited by Clobert J, Baguette M, Benton T, Bullock J. Oxford University Press, Oxford; 2012:187-210.
  • [97]Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P: Spruce colonization at treeline: where do those seeds come from? Heredity (Edinb) 2009, 103:136-145.
  • [98]Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C: Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr 2012, 39:1439-1449.
  • [99]Lesser MR, Jackson ST: Contributions of long-distance dispersal to population growth in colonising Pinus ponderosa populations. Ecol Lett 2013, 16:380-389.
  • [100]Klein EK, Bontemps A, Oddou-Muratorio S: Seed dispersal kernels estimated from genotypes of established seedlings: does density-dependent mortality matter? Methods Ecol Evol 2013, 4:1059-1069.
  • [101]Soubeyrand S, Laine A-L, Hanski I, Penttinen A: Spatiotemporal structure of host-pathogen interactions in a metapopulation. Am Nat 2009, 174:308-320.
  • [102]Dowd M, Meyer R: A Bayesian approach to the ecosystem inverse problem. Ecol Modell 2003, 168:39-55.
  • [103]Khemka A, Bouman CA, Bell MR: Inverse problems in atmospheric dispersion with randomly scattered sensors. Digit Signal Proc 2006, 16:638-651.
  • [104]Manel S, Gaggiotti OE, Waples RS: Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 2005, 20:136-142.
  • [105]Wilson GA, Rannala B: Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003, 163:1177-1191.
  • [106]Faubet P, Gaggiotti OE: A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 2008, 178:1491-1504.
  • [107]Broquet T, Yearsley J, Hirzel AH, Goudet J, Perrin N: Inferring recent migration rates from individual genotypes. Mol Ecol 2009, 18:1048-1060.
  • [108]Robledo-Arnuncio JJ, Navascués M, González-Martínez SC, Gil L: Estimating gametic introgression rates in a risk assessment context: a case study with Scots pine relicts. Heredity (Edinb) 2009, 103:385-393.
  • [109]Robledo-Arnuncio JJ: Wind pollination over mesoscale distances: an investigation with Scots pine. New Phytol 2011, 190:222-233.
  • [110]Robledo-Arnuncio JJ: Joint estimation of contemporary seed and pollen dispersal rates among plant populations. Mol Ecol Resour 2012, 12:299-311.
  • [111]Gaggiotti OE, Brooks SP, Amos W, Harwood J: Combining demographic, environmental and genetic data to test hypotheses about colonization events in metapopulations. Mol Ecol 2004, 13:811-825.
  • [112]Mahura AG, Korsholm US, Baklanov AA, Rasmussen A: Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia (Bologna) 2007, 23:171-179.
  • [113]Bohrerova Z, Bohrer G, Cho KD, Bolch MA, Linden KG: Determining the viability response of pine pollen to atmospheric conditions during long-distance dispersal. Ecol Appl 2009, 19:656-667.
  • [114]Amm A, Pichot C, Dreyfus P, Davi H, Fady B: Improving the estimation of landscape scale seed dispersal by integrating seedling recruitment. Ann For Sci 2012, 69:845-856.
  • [115]Karlsen SR, Ramfjord H, Høgda KA, Johansen B, Danks FS, Brobakk TE: A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia (Bologna) 2008, 25:15-25.
  • [116]Klein EK, Lavigne C, Picault H, Renard M, Gouyon P-H: Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J Appl Ecol 2006, 43:141-151.
  • [117]Ovaskainen O, Rekola H, Meyke E, Arjas E: Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 2008, 89:542-554.
  • [118]Zheng C, Pennanen J, Ovaskainen O: Modelling dispersal with diffusion and habitat selection: analytical results for highly fragmented landscapes. Ecol Modell 2009, 220:1495-1505.
  • [119]Viana DS, Santamaría L, Michot TC, Figuerola J: Allometric scaling of long-distance seed dispersal by migratory birds. Am Nat 2013, 181:649-662.
  • [120]Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner K: Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 2010, 19:3576-3591.
  • [121]Lander TA, Klein EK, Stoeckel S, Mariette S, Musch B, Oddou-Muratorio S: Interpreting realized pollen flow in terms of pollinator travel paths and land-use resistance in heterogeneous landscapes. Landsc Ecol 2013, 28:1769-1783.
  • [122]Clark JS, Gelfand AE: A future for models and data in environmental science. Trends Ecol Evol 2006, 21:375-380.
  • [123]Figuerola J, Green AJ, Michot TC: Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat 2005, 165:274-280.
  • [124]Viana DS, Santamaría L, Michot TC, Figuerola J: Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography (Cop) 2013, 36:430-438.
  • [125]Wasser SK, Shedlock AM, Comstock K, Ostrander EA, Mutayoba B, Stephens M: Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc Natl Acad Sci U S A 2004, 101:14847-14852.
  • [126]Rundel CW, Wunder MB, Alvarado AH, Ruegg KC, Harrigan R, Schuh A, Kelly JF, Siegel RB, Desante DF, Smith TB, Novembre J: Novel statistical methods for integrating genetic and stable isotope data to infer individual-level migratory connectivity. Mol Ecol 2013, 22:4163-4176.
  • [127]Pella J, Masuda M: Bayesian methods for analysis of stock mixtures. Fish Bull 2001, 99:151-167.
  • [128]Neubauer P, Shima JS, Swearer SE: Inferring dispersal and migrations from incomplete geochemical baselines: analysis of population structure using Bayesian infinite mixture models. Methods Ecol Evol 2013, 4:836-845.
  • [129]Matlack GR: Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am J Bot 1987, 74:1150-1160.
  • [130]Tackenberg O, Poschlod P, Bonn S: Assessment of wind dispersal potential in plant species. Ecol Monogr 2003, 73:191-205.
  • [131]Stevens VM, Pavoine S, Baguette M: Variation within and between closely related species uncovers high intra-specific variability in dispersal. PLoS One 2010, 5:e11123.
  • [132]Thiede DA, Augspurger CK: Intraspecific variation in seed dispersion of Lepidium campestre (Barassicaceae). Am J Bot 1996, 83:856-866.
  • [133]Dick CW, Etchelecu G, Austerlitz F: Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 2003, 12:753-764.
  • [134]Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH, Difazio SP: Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol Ecol 2009, 18:357-373.
  • [135]Chybicki IJ, Burczyk J: Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Mol Ecol 2010, 19:2137-2151.
  • [136]Oddou-Muratorio S, Bontemps A, Klein EK, Chybicki I, Vendramin GG, Suyama Y: Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. For Ecol Manage 2010, 259:2151-2159.
  • [137]Moran EV, Clark JS: Between-site differences in the scale of dispersal and gene flow in red oak. PLoS One 2012, 7:e36492.
  • [138]Clark JS, Macklin E, Wood L: Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol Monogr 1998, 68:213-235.
  • [139]Rodríguez-Pérez J, Larrinaga AR, Santamaría L: Effects of frugivore preferences and habitat heterogeneity on seed rain: a multi-scale analysis. PLoS One 2012, 7:e33246.
  • [140]Morales JM, Garcia D, Martínez D, Rodriguez-Perez J, Herrera JM: Frugivore behavioural details matter for seed dispersal: a multi-species model for Cantabrian thrushes and trees. PLoS One 2013, 8:e65216.
  • [141]Skarpaas O, Auhl R, Shea K: Environmental variability and the initiation of dispersal: turbulence strongly increases seed release. Proc R Soc B Biol Sci 2006, 273:751-756.
  • [142]Olesen JM, Bascompte J, Elberling H, Jordano P: Temporal dynamics in a pollination network. Ecology 2008, 89:1573-1582.
  • [143]Jansen PA, Bongers F, Hemerik L: Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent. Ecol Monogr 2004, 74:569-589.
  • [144]Soons MB, van der Vlugt C, van Lith B, Heil GW, Klaassen M: Small seed size increases the potential for dispersal of wetland plants by ducks. J Ecol 2008, 96:619-627.
  • [145]Kelly N, Cousens RD, Taghizadeh MS, Hanan JS, Mouillot D: Plants as populations of release sites for seed dispersal: a structural-statistical analysis of the effects of competition on Raphanus raphanistrum. J Ecol 2013, 101:878-888.
  • [146]Chybicki IJ, Burczyk J: Seeing the forest through the trees: comprehensive inference on individual mating patterns in a mixed stand of Quercus robur and Q. petraea. Ann Bot 2013, 112:561-574.
  • [147]Gauzere J, Klein EK, Oddou-Muratorio S: Ecological determinants of mating system within and between three Fagus sylvatica populations along an elevational gradient. Mol Ecol 2013, 22:5001-5015.
  • [148]Ritland K: Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol 2000, 9:1195-1204.
  • [149]Ronce O: How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 2007, 38:231-253.
  • [150]Cwynar LC, MacDonald GM: Geographical variation of lodgepole pine in relation to population history. Am Nat 1987, 129:463-469.
  • [151]Peroni PA: Seed size and dispersal potential of Acer rubrum (Aceraceae) samaras produced by populations in early and late successional environments. Am J Bot 1994, 81:1428-1434.
  • [152]Fresnillo B, Ehlers BK: Variation in dispersability among mainland and island populations of three wind dispersed plant species. Plant Syst Evol 2007, 270:243-255.
  • [153]Darling E, Samis KE, Eckert CG: Increased seed dispersal potential towards geographic range limits in a Pacific coast dune plant. New Phytol 2008, 178:424-435.
  • [154]Monty A, Mahy G: Evolution of dispersal traits along an invasion route in the wind?dispersed Senecio inaequidens (Asteraceae). Oikos 2010, 119:1563-1570.
  • [155]Cheptou P-O, Carrue O, Rouifed S, Cantarel A: Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci U S A 2008, 105:3796-3799.
  • [156]Riba M, Mayol M, Giles BE, Ronce O, Imbert E, van der Velde M, Chauvet S, Ericson L, Bijlsma R, Vosman B, Smulders MJM, Olivieri I: Darwin¿s wind hypothesis: does it work for plant dispersal in fragmented habitats? New Phytol 2009, 183:667-677.
  • [157]Duputié A, Massol F: An empiricist¿s guide to theoretical predictions on the evolution of dispersal. Interface Focus 2013, 3:20130028.
  • [158]Donohue K, Polisetty CR, Wender NJ: Genetic basis and consequences of niche construction: plasticity-induced genetic constraints on the evolution of seed dispersal in Arabidopsis thaliana. Am Nat 2005, 165:537-550.
  • [159]Etterson JR, Shaw RG: Constraint to adaptive evolution in response to global warming. Science 2001, 294:151-154.
  • [160]Jordano P: Spatial and temporal variation in the avian-frugivore assemblage of Prunus mahaleb: patterns and consequences. Oikos 1994, 71:479-491.
  • [161]Schupp EW, Jordano P, Gomez JM: Seed dispersal effectiveness revisited: a conceptual review. New Phytol 2010, 188:333-353.
  • [162]Levey DJ: Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecol Monogr 1988, 58:251-269.
  • [163]Morris WF: Predicting the consequence of plant spacing and biased movement for pollen dispersal by honey bees. Ecology 1993, 74:493-500.
  • [164]Greene DF, Johnson EA: Fruit abscission in Acer saccharinum with reference to seed dispersal. Can J Bot 1992, 70:2277-2283.
  • [165]Willson MF, Whelan CJ: Variation of dispersal phenology in a bird-dispersed shrub, Cornus drummondii. Ecol Monogr 1993, 63:151-172.
  • [166]Bishop JG, Schemske DW: Variation in flowering phenology and its consequences for lupines colonizing Mount St. Helens. Ecology 1998, 79:534-546.
  • [167]Skarpaas O, Shea K, Jongejans E: Watch your time step: trapping and tracking dispersal in autocorrelated environments. Methods Ecol Evol 2011, 2:407-415.
  • [168]Muller-Landau HC, Wright SJ, Calderón O, Condit R, Hubbell SP: Interspecific variation in primary seed dispersal in a tropical forest. J Ecol 2008, 96:653-667.
  • [169]Irwin AJ, Hamrick JL, Godt MJW, Smouse PE: A multiyear estimate of the effective pollen donor pool for Albizia julibrissin. Heredity (Edinb) 2003, 90:187-194.
  • [170]Houle G: Seed dispersal and seedling recruitment of Betula alleghaniensis: spatial inconsistency in time. Ecology 1998, 79:807-818.
  • [171]Iwaizumi MG, Takahashi M, Isoda K, Austerlitz F: Consecutive five-year analysis of paternal and maternal gene flow and contributions of gametic heterogeneities to overall genetic composition of dispersed seeds of Pinus densiflora (Pinaceae). Am J Bot 2013, 100:1896-1904.
  • [172]Petit RJ, Hampe A: Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 2006, 37:187-214.
  • [173]Muller-Landau HC: Seed dispersal in a tropical forest: empirical patterns, their origins and their consequences for forest dynamics. PhD thesis. Princeton University, ?; 2001.
  • [174]Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B: Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 2011, 20:1997-2010.
  • [175]Andrew ME, Ustin SL: The effects of temporally variable dispersal and landscape structure on invasive species spread. Ecol Appl 2010, 20:593-608.
  • [176]Ellner SP, Schreiber SJ: Temporally variable dispersal and demography can accelerate the spread of invading species. Theor Popul Biol 2012, 82:283-298.
  • [177]Chesson P, Huntly N: The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 1997, 150:519-553.
  • [178]Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldán-Ruiz I, Wiegand T: A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytol 2007, 176:448-459.
  • [179]Wiegand K, Jeltsch F, Ward D: Analysis of the population dynamics of Acacia trees in the Negev desert, Israel with a spatially-explicit computer simulation model. Ecol Modell 1999, 117:203-224.
  • [180]Vellend M: Conceptual synthesis in community ecology. Q Rev Biol 2010, 85:183-206.
  • [181]Chave J, Muller-Landau HC, Levin SA: Comparing classical community models: theoretical consequences for patterns of diversity. Am Nat 2002, 159:1-23.
  • [182]Mouquet N, Loreau M: Community patterns in source-sink metacommunities. Am Nat 2003, 162:544-557.
  • [183]Levine JM, Murrell DJ: The community-level consequences of seed dispersal patterns. Annu Rev Ecol Evol Syst 2003, 34:549-574.
  • [184]Tuomisto H, Ruokolainen K, Yli-Halla M: Dispersal, environment, and floristic variation of western Amazonian forests. Science 2003, 299:241-244.
  • [185]Smith TW, Lundholm JT: Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography (Cop) 2010, 33:648-655.
  • [186]Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB, Núñez P, Vargas H, Aguilar S, Valencia R, Villa G, Muller-Landau H, Losos E, Hubbell SP: Beta-diversity in tropical forest trees. Science 2002, 295:666-669.
  • [187]Magrach A, Larrinaga AR, Santamaria L: Effects of matrix characteristics and interpatch distance on functional connectivity in fragmented temperate rainforests. Conserv Biol 2012, 26:238-247.
  • [188]Magrach A, Larringa AR, Santamaria L: Internal habitat quality determines the effects of fragmentation on austral forest climbing and epiphytic angiosperms. PLoS One 2012, 7:e48473.
  • [189]Wright SJ, Hernandez A, Condit R: The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 2007, 39:363-371.
  • [190]Theimer TC, Gehring CA, Green PT, Connell JH: Terrestrial vertebrates alter seedling composition and richness but not diversity in an Australian tropical forest. Ecology 2011, 92:1637-1647.
  • [191]Myers JA, Harms KE: Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol Lett 2009, 12:1250-1260.
  • [192]Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A: The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 2004, 7:601-613.
  • [193]Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago and London; 2005.
  • [194]Bolker BM, Pacala SW: Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 1999, 153:575-602.
  • [195]Dieckmann M, Law R, Metz JAJ: The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge; 2000.
  • [196]Murrell DJ, Law R: Heteromyopia and the spatial coexistence of similar competitors. Ecol Lett 2003, 6:48-59.
  • [197]Detto M, Muller-Landau HC: Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Am Nat 2013, 181:E68-E82.
  • [198]Augspurger CK, Kitajima K: Experimental studies of seedling recruitment from contrasting seed distributions. Ecology 1992, 73:1270-1284.
  • [199]Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E: Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 1996, 66:1-43.
  • [200]Svenning J-C, Skov F: Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol Lett 2007, 10:453-460.
  • [201]McLachlan JS, Clark JS, Manos PS: Molecular indicators of tree migration capacity under rapid climate change. Ecology 2005, 86:2088-2098.
  • [202]Rowe KC, Heske EJ, Brown PW, Paige KN: Surviving the ice: Northern refugia and postglacial colonization. Proc Natl Acad Sci U S A 2004, 101:10355-10359.
  • [203]Davis MB, Shaw RG: Range shifts and adaptive responses to Quaternary climate change. Science 2001, 292:673-679.
  • [204]Phillips BL, Brown GP, Shine R: Life-history evolution in range-shifting populations. Ecology 2010, 91:1617-1627.
  • [205]Duputié A, Massol F, Chuine I, Kirkpatrick M, Ronce O: How do genetic correlations affect species range shifts in a changing environment? Ecol Lett 2012, 15:251-259.
  • [206]Chevin L-M, Collins S, Lefèvre F: Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol 2013, 27:967-979.
  • [207]Lavergne S, Mouquet N, Thuiller W, Ronce O: Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 2010, 41:321-350.
  • [208]Morin X, Viner D, Chuine I: Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 2008, 96:784-794.
  • [209]Honnay O, Verheyen K, Butaye J, Jacquemyn H, Bossuyt B, Hermy M: Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol Lett 2002, 5:525-530.
  • [210]Kirkpatrick M: Patterns of quantitative genetic variation in multiple dimensions. Genetica 2009, 136:271-284.
  • [211]Walsh B, Blows MW: Abundant genetic variation?+?strong selection?=?multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 2009, 40:41-59.
  • [212]Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araújo MB, Rebelo TG: Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 2008, 4:560-563.
  • [213]Anderson BJ, Akçakaya HR, Araújo MB, Fordham DA, Martinez-Meyer E, Thuiller W, Brook BW: Dynamics of range margins for metapopulations under climate change. Proc Biol Sci 2009, 276:1415-1420.
  • [214]Fordham DA, Resit Akçakaya H, Araújo MB, Elith J, Keith DA, Pearson R, Auld TD, Mellin C, Morgan JW, Regan TJ, Tozer M, Watts MJ, White M, Wintle BA, Yates C, Brook BW: Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Chang Biol 2012, 18:1357-1371.
  • [215]Schurr FM, Pagel J, Cabral JS, Groeneveld J, Bykova O, O¿Hara RB, Hartig F, Kissling WD, Linder HP, Midgley GF, Schröder B, Singer A, Zimmermann NE: How to understand species¿ niches and range dynamics: a demographic research agenda for biogeography. J Biogeogr 2012, 39:2146-2162.
  • [216]Kuparinen A, Schurr FM: A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: application to gene flow from transgenic forests. Ecol Modell 2007, 202:476-486.
  • [217]Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA: Integrating biophysical models and evolutionary theory to predict climatic impacts on species¿ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 2009, 23:528-538.
  • [218]Kissling WD, Dormann CF, Groeneveld J, Hickler T, Kühn I, McInerny GJ, Montoya JM, Römermann C, Schiffers K, Schurr FM, Singer A, Svenning J-C, Zimmermann NE, O¿Hara RB: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J Biogeogr 2012, 39:2163-2178.
  • [219]Cabral JS, Kreft H: Linking ecological niche, community ecology and biogeography: insights from a mechanistic niche model. J Biogeogr 2012, 39:2212-2224.
  • [220]Kokko H, López-Sepulcre A: The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? Ecol Lett 2007, 10:773-782.
  • [221]Garant D, Forde SE, Hendry AP: The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 2007, 21:434-443.
  • [222]Kuparinen A, Savolainen O, Schurr FM: Mortality can promote evolutionary adaptation of forest trees to climate change. For Ecol Manage 2010, 259:1003-1008.
  • [223]Aguilée R, Shaw FH, Rousset F, Shaw RG, Ronce O: How does pollen versus seed dispersal affect niche evolution? Evolution (N Y) 2013, 67:792-805.
  • [224]Soons MB, Bullock JM: Non-random seed abscission, long-distance wind dispersal and plant migration rates. J Ecol 2008, 96:581-590.
  • [225]Nathan R, Horvitz N, He Y, Kuparinen A, Schurr FM, Katul GG: Spread of North American wind-dispersed trees in future environments. Ecol Lett 2011, 14:211-219.
  • [226]Hampe A: Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol 2011, 37:666-673.
  • [227]Bullock JM, White SM, Prudhomme C, Tansey C, Perea R, Hooftman DAP: Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J Ecol 2012, 100:104-115.
  • [228]Thompson SE, Katul GG: Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species. Glob Chang Biol 2013, 19:1720-1735.
  • [229]Cunze S, Heydel F, Tackenberg O: Are plant species able to keep pace with the rapidly changing climate? PLoS One 2013, 8:e67909.
  • [230]Jackson ST, Betancourt JL, Booth RK, Gray ST: Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc Natl Acad Sci U S A 2009, 106(Suppl 2):19685-19692.
  • [231]Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG: Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst 2010, 41:293-319.
  • [232]Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P: Climate change and plant regeneration from seed. Glob Chang Biol 2011, 17:2145-2161.
  • [233]Bykova O, Chuine I, Morin X, Higgins SI: Temperature dependence of the reproduction niche and its relevance for plant species distributions. J Biogeogr 2012, 39:2191-2200.
  • [234]Yeaman S, Jarvis A: Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proc R Soc B 2006, 273:1587-1593.
  • [235]Caughlin TT, Ferguson JM, Lichstein JW, Bunyavejchewin S, Levey DJ: The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology 2014, 95:952-962.
  • [236]Hodkinson DJ, Thompson K: Plant dispersal: the role of man. J Appl Ecol 1997, 34:1484-1496.
  • [237]Wichmann MC, Alexander MJ, Soons MB, Galsworthy S, Dunne L, Gould R, Fairfax C, Niggemann M, Hails RS, Bullock JM: Human-mediated dispersal of seeds over long distances. Proc Biol Sci 2009, 276:523-532.
  • [238]Wright SJ: Seed dispersal in anthropogenic landscapes. In Seed Dispersal: Theory and its Application in a Changing World. Edited by Dennis AJ, Schupp EW, Green RA, Wescott DA. CAB International, Oxfordshire; 2007:599-614.
  • [239]McConkey KR, Prasad S, Corlett RT, Campos-Arceiz A, Brodie JF, Rogers H, Santamaria L: Seed dispersal in changing landscapes. Biol Conserv 2012, 146:1-13.
  • [240]Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH: Global biodiversity scenarios for the year 2100. Science 2000, 287:1770-1774.
  • [241]Brook BW, Sodhi NS, Bradshaw CJA: Synergies among extinction drivers under global change. Trends Ecol Evol (Personal Ed) 2008, 23:453-460.
  • [242]Higgins SI, Richardson DM: Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 1999, 153:464-475.
  • [243]Neilson RP, Pitelka LF, Solomon AM, Nathan R, Midgley GF, Fragoso JMV, Lischke H, Thompson K: Forecasting Regional to Global Plant Migration in Response to Climate Change. Bioscience 2005, 55:749.
  • [244]Tylianakis JM, Didham RK, Bascompte J, Wardle DA: Global change and species interactions in terrestrial ecosystems. Ecol Lett 2008, 11:1351-1363.
  • [245]Aguilar R, Ashworth L, Galetto L, Aizen MA: Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 2006, 9:968-980.
  • [246]Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou P-O, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marín M, Winn AA: Plant mating systems in a changing world. Trends Ecol Evol 2010, 25:35-43.
  • [247]Jordano P: Fruits and frugivory. In Seeds: The Ecology of Regeneration in Plant Communities. Edited by Fenner M. CABI Publ, Wallinford, UK; 2000:125-166.
  • [248]Traveset A, Richardson DM: Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 2006, 21:208-216.
  • [249]Cordeiro NJ, Howe HF: Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc Natl Acad Sci U S A 2003, 100:14052-14056.
  • [250]García D, Chacoff NP: Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conserv Biol 2007, 21:400-411.
  • [251]Markl JS, Schleuning M, Forget PM, Jordano P, Lambert JE, Traveset A, Wright SJ, Böhning-Gaese K: Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv Biol 2012, 26:1072-1081.
  • [252]Magrach A, Laurance WF, Larrinaga AR, Santamaria L: Meta-Analysis of the effects of forest fragmentation on interspecific Interactions.Conserv Biol 2014, ?:?. doi:10.1111/cobi.12304.
  • [253]Galetti M, Donatti CI, Pires AS, Guimaraes PR, Jordano P: Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot J Linn Soc 2006, 151:141-149.
  • [254]Cramer JM, Mesquita RCG, Bruce Williamson G: Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biol Conserv 2007, 137:415-423.
  • [255]Steffan-Dewenter I, Münzenberg U, Tscharntke T: Pollination, seed set and seed predation on a landscape scale. Proc Biol Sci 2001, 268:1685-1690.
  • [256]Pearson RG, Dawson TP: Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 2005, 123:389-401.
  • [257]Williams P, Hannah L, Andelman S, Midgley G, Araujo M, Hughes G, Manne L, Martinez-Meyer E, Pearson R: Planning for climate change: identifying minimum-dispersal corridors for the Cape Proteaceae. Conserv Biol 2005, 19:1063-1074.
  • [258]Damschen EI, Brudvig LA, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ: The movement ecology and dynamics of plant communities in fragmented landscapes. Proc Natl Acad Sci U S A 2008, 105:19078-19083.
  • [259]Townsend PA, Levey DJ: An experimental test of whether habitat corridors affect pollen transfer. Ecology 2005, 86:466-475.
  • [260]Zabel CJ, Roberts LM, Mulder BS, Stauffer HB, Dunk JR, Wolcott K, Solis D, Gertsch M, Woodbridge B, Wright A, Goldsmith G, Keckler C: A collaborative approach in adaptive management at a large-landscape scale. In Predicting species ocurrence: issues of accuracy and scale. Edited by Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB. Island Press, Washington; 2002.
  • [261]Hobbs RJ, Suding KN, Seastedt TR: Management of novel ecosystems: are novel approaches required? Front Ecol Environ 2008, 6:547-553.
  • [262]Hamrick JL: Response of forest trees to global environmental changes. For Ecol Manage 2004, 197:323-335.
  • [263]Kuparinen A, Katul G, Nathan R, Schurr FM: Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc Biol Sci 2009, 276:3081-3087.
  • [264]Trakhtenbrot A, Nathan R, Perry G, Richardson DM: The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 2005, 11:173-181.
  • [265]Kuparinen A, Markkanen T, Riikonen H, Vesala T: Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecol Modell 2007, 208:177-188.
  • [266]Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL, Turner JR, Brudvig LA, Haddad NM, Levey DJ, Tewksbury JJ: How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci U S A 2014, 111:3484-3489.
  • [267]Stockwell CA, Hendry AP, Kinnison MT: Contemporary evolution meets conservation biology. Trends Ecol Evol 2003, 18:94-101.
  • [268]Santamaría L, Méndez PF: Evolution in biodiversity policy - current gaps and future needs. Evol Appl 2012, 5:202-218.
  • [269]Lenormand T: Gene flow and the limits to natural selection. Trends Ecol Evol 2002, 17:183-189.
  • [270]Lopez S, Rousset F, Shaw FH, Shaw RG, Ronce O: Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapes. J Evol Biol 2008, 21:294-309.
  • [271]Tallmon DA, Luikart G, Waples RS: The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 2004, 19:489-496.
  • [272]Laikre L, Schwartz MK, Waples RS, Ryman N, GeM W: Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 2010, 25:520-529.
  • [273]Harrison S: How natural habitat patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 1997, 78:1898-1906.
  • [274]Freestone AL, Inouye BD: Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 2006, 87:2425-2432.
  • [275]Roschewitz I, Gabriel D, Tscharntke T, Thies C: The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J Appl Ecol 2005, 42:873-882.
  • [276]Plantegenest M, Le May C, Fabre F: Landscape epidemiology of plant diseases. J R Soc Interface 2007, 4:963-972.
  • [277]Urban MC, De Meester L, Vellend M, Stoks R, Vanoverbeke J: A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol Appl 2012, 5:154-167.
  文献评价指标  
  下载次数:1次 浏览次数:10次