期刊论文详细信息
Plant Methods
Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions
Julie Scholes1  Neelima Sinha3  Jesse Machuka2  Amos Alakonya2  Sarah Macharia2  Steven Runo2 
[1] Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom;Biochemistry and Biotechnology Department, Kenyatta University, P. O. Box 43844, 00100 GPO, Nairobi, Kenya;Division of Plant Biology, University of California Davis, Davis, 1 Shields Avenue LSA 2231, 95616, Davis, CA, USA
关键词: Composite plants;    Hairy roots;    Agrobacterium rhizogenes;    Striga hermonthica;    Maize;   
Others  :  822271
DOI  :  10.1186/1746-4811-8-20
 received in 2012-04-30, accepted in 2012-06-21,  发布年份 2012
PDF
【 摘 要 】

Background

Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation.

Results

We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots.

Conclusions

This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions.

【 授权许可】

   
2012 Runo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712095450467.pdf 3085KB PDF download
Figure 4. 156KB Image download
Figure 3. 82KB Image download
Figure 2. 44KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Westwood JH, Yoder JI, Timko MP, de Pamphilis CW: The evolution of parasitism in plants. Trends Plant Sci 2010, 15:227-235.
  • [2]Parker C, Riches CR: Parasitic Weeds of the World: Biology and Control. CAB International, Wallingford CT; 1993.
  • [3]Bouwmeester HJ, Roux C, L’opez-R’aez JA, B’ecard G: Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 2007, 12:224-230.
  • [4]Keyes WJ, Palmer AG, Erbil WK, Taylor JV, Apkarian RP, Weeks ER, Lynn DG: Sernagenesis and the parasitic angiosperm Striga asiatica. Plant J 2007, 51:707-716.
  • [5]Dörr I: How Striga parasitizes its host: a TEM and SEM study. Ann Bot 1997, 79:463-472.
  • [6]Scholes JD, Press MC: Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Curr Opin Plant Biol 2008, 11:180-186.
  • [7]Ejeta G: The Striga scourge in Africa: a growing pandemic. In Integrating New Technologies for Striga Control:Toward Ending the Witch-Hunt. Edited by Ejeta G, Gressel J. World Scientific, Singapore; 2007:3-16.
  • [8]Runo S, Alakonya A, Machuka J, Sinha N: RNA interference as a resistance mechanism against crop parasites in Africa: a ‘Trojan horse’ approach. Pest Manag Sci 2011, 67:129-136.
  • [9]Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaas A, Timko MP, Wafula EK, Wickett NJ, Yoder JI: The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. Weed Science 2012, 60:295-30.
  • [10]Riker AJ: Studies on infectious hairy root of nursery apple trees. J Agric Res 1930, 41:507-540.
  • [11]Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J: Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 1983, 295:432-434.
  • [12]Cleene MD, Leu JD: The host range of infectious hairyroot [Agrobacterium rhizogenes]. Bot Rev 1981, 47:147-194.
  • [13]Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D: Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interac 1995, 8:532-537.
  • [14]Yibrah HS, Gronroos R, Lindroth A, Franzen H, Clapham D, von Arnold S: Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res 1996, 5:75-85.
  • [15]Akutsu M, Ishizaki T, Sato H: Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Mol Breed 2004, 13:69-78.
  • [16]Jian B, Hou W, Wu C, Liu B, Liu W, Song S, Bi Y, Han T: Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 2009, 9:78. BioMed Central Full Text
  • [17]Tepfer D: Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 1984, 37:959-967.
  • [18]Bonaldi K, Gherbi H, Franche C, Bastien G, Fardoux J, Barker D, Giraud E, Cartieaux F: The Nod Factor-Independent Symbiotic Signaling Pathway: Development of Agrobacterium rhizogenes-Mediated Transformation for the Legume Aeschynomene indica. Mol Plant Microbe Interact 2010, 23:1537-1544.
  • [19]Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R: RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exper Bot 2004, 55:983-992.
  • [20]Zhou X, Chandrasekharan MB, Hall TC: High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula. New Phytol 2004, 162:813-822.
  • [21]Bulgakov VP: Functions of rol genes in plant secondary metabolism. Biotechnol Adv 2008, 26:318-324.
  • [22]Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand M, Lashermes P, Etienne H: Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 2006, 25:959-967.
  • [23]Taylor CG, Fuchs B, Collier R, Lutke WK: Generation of composite plants using Agrobacterium rhizogenes. Methods in Mol Biol 2006, 343:155-167.
  • [24]Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG: Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 2001, 14:695-700.
  • [25]Kereszt A, Li D, Indrasumunar A, Nguyen C, Nontachaiyapoom S, Kinkema M, Gresshoff PM: Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat protocols 2007, 2:948-952.
  • [26]Torregrosa L, Bouquet A: Agrobacterium tumefaciens and Agrobacterium rhizogenes co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tissue Organ Cult 1997, 49:53-62.
  • [27]Gurney AL, Slate J, Press MC, Scholes JD: A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 2006, 169:199-208.
  • [28]Ishida Y, Hiei Y, Komari T: Agrobacterium-mediated transformation of maize. Nat Protocols 2007, 2:1614-1621.
  • [29]Bercetche J, Chriqui D, Adam S, David C: Morphogenetic and cellular reorientations induced by Agrobacterium rhizogenes strains (1855, 2659 and 8198) on carrot, pea and tobacco. Plant Sci 1987, 52:195-210.
  • [30]Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR: Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 2004, 22:828-831.
  • [31]Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D: Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 2002, 129:13-22.
  • [32]Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T: High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 1996, 14:745-750.
  • [33]Ahmadabadi M, Ruf S, Bock RA: Leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 2008, 16:437-448.
  • [34]Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH: Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 1991, 95:426-434.
  • [35]Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, Wilber C, Sheikhi H, Kashikar N, Meeker K, Al-Abed D, Berry K, Vierling R, Goldman SL: Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 2003, 46:323-329.
  • [36]Xu H, Zhou X, Lu J, Wang J, Wang X: Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Science in China Series C: Life Sciences. 2006, 49:305-310.
  • [37]Bandyopadhyay M, Jha S, Tepfer D: Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 2007, 26:599-609.
  • [38]Grant JE, Dommisse EM, Conner AJ: Gene transfer to plants using Agrobacterium. CAB International, Wallingford; 1991.
  • [39]Tomilov AA, Tomilova NB, Yoder JI: Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 2006, 225:1059-1071.
  • [40]Terada R, Shimamoto K: Expression of CaMV35S-GUS gene in transgenic rice plants. Mol Gen Genet 1990, 220:389-392.
  • [41]Wally O, Jayaraj J, Punja ZK: Comparative expression of β-glucuronidase with five different promoters in transgenic carrot (Daucus carota L.) root and leaf tissues. Plant Cell Rep 2007, 27:279-287.
  • [42]Reddy MS, Randy D, Collins G: Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 2003, 21:676-683.
  • [43]Mann DG, LaFayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA, Parrott WA, Stewart-Jr CN: Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J 2011, 10:226-236.
  • [44]Murashige T, Skoog F: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962, 15:473-497.
  • [45]Hewitt EJ: Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureau, London; 1966.
  • [46]Cissoko M, Boisnard A, Rodenburg J: Press MC, Scholes JD: New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds. Striga hermonthica and S. asiatica. New Phytol 2011, 192:952-963.
  文献评价指标  
  下载次数:49次 浏览次数:12次