期刊论文详细信息
Retrovirology
Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication
Carlos Suñé1  José Alcamí7  Cristina Hernández-Munain5  Mariano A Garcia-Blanco3  Caroline Le Sommer2  Elena Mateos7  María Rosa López-Huertas7  Immaculada Montanuy4  Marta Montes6  Mayte Coiras7 
[1] Department of Molecular Biology, Instituto de Parasitología y Biomedicina “López Neyra” (IPBLN-CSIC), Armilla, Granada 18016, Spain;The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, Durham, NC 27709, USA;Department of Molecular Genetics and Microbiology, and Center for RNA Biology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA;Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 2QQ, United Kingdom;Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina “López Neyra” (IPBLN-CSIC), Armilla Granada 18016, Spain;Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark;AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
关键词: Pausing;    RNA polymerase II;    Transcription elongation;    TCERG1;   
Others  :  806749
DOI  :  10.1186/1742-4690-10-124
 received in 2013-04-08, accepted in 2013-10-18,  发布年份 2013
PDF
【 摘 要 】

Background

Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo.

Results

We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication.

Conclusions

Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication

【 授权许可】

   
2013 Coiras et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708095821515.pdf 1859KB PDF download
Figure 6. 83KB Image download
Figure 5. 88KB Image download
Figure 4. 63KB Image download
Figure 3. 55KB Image download
Figure 2. 81KB Image download
Figure 1. 108KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Sikorski TW, Buratowski S: The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 2009, 21:344-351.
  • [2]Rougvie AE, Lis JT: The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 1988, 54:795-804.
  • [3]Bender TP, Thompson CB, Kuehl WM: Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 1987, 237:1473-1476.
  • [4]McGeady ML, Wood TG, Maizel JV, Vande Woude GF: Sequences upstream from the mouse c-mos oncogene may function as a transcription termination signal. DNA 1986, 5:289-298.
  • [5]Krumm A, Meulia T, Brunvand M, Groudine M: The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 1992, 6:2201-2213.
  • [6]Pinaud S, Mirkovitch J: Regulation of c-fos expression by RNA polymerase elongation competence. J Mol Biol 1998, 280:785-798.
  • [7]Chinsky JM, Maa MC, Ramamurthy V, Kellems RE: Adenosine deaminase gene expression. Tissue-dependent regulation of transcriptional elongation. J Biol Chem 1989, 264:14561-14565.
  • [8]Biragyn A, Nedospasov SA: Lipopolysaccharide-induced expression of TNF-alpha gene in the macrophage cell line ANA-1 is regulated at the level of transcription processivity. J Immunol 1995, 155:674-683.
  • [9]Raschke EE, Albert T, Eick D: Transcriptional regulation of the Ig kappa gene by promoter-proximal pausing of RNA polymerase II. J Immunol 1999, 163:4375-4382.
  • [10]Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA: A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007, 130:77-88.
  • [11]Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K: RNA polymerase is poised for activation across the genome. Nat Genet 2007, 39:1507-1511.
  • [12]Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 2007, 39:1512-1516.
  • [13]Core LJ, Lis JT: Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 2008, 319:1791-1792.
  • [14]Nechaev S, Fargo DC, dos Santos G, Liu L, Gao Y, Adelman K: Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 2010, 327:335-338.
  • [15]Gilchrist DA, Dos Santos G, Fargo DC, Xie B, Gao Y, Li L, Adelman K: Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 2010, 143:540-551.
  • [16]Levine M: Paused RNA Polymerase II as a Developmental Checkpoint. Cell 2011, 145:502-511.
  • [17]Alexander RD, Innocente SA, Barrass JD, Beggs JD: Splicing-dependent RNA polymerase pausing in yeast. Mol Cell 2010, 40:582-593.
  • [18]Carrillo Oesterreich F, Preibisch S, Neugebauer KM: Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 2010, 40:571-581.
  • [19]Buratowski S: Progression through the RNA polymerase II CTD cycle. Mol Cell 2009, 36:541-546.
  • [20]Egloff S, Dienstbier M, Murphy S: Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012, 28:333-341.
  • [21]Bartkowiak B, Mackellar AL, Greenleaf AL: Updating the CTD Story: From Tail to Epic. Genet Res Int 2011, 2011:623718.
  • [22]Hakre S, Chavez L, Shirakawa K, Verdin E: Epigenetic regulation of HIV latency. Curr Opin HIV AIDS 2011, 6:19-24.
  • [23]Wagschal A, Rousset E, Basavarajaiah P, Contreras X, Harwig A, Laurent-Chabalier S, Nakamura M, Chen X, Zhang K, Meziane O, et al.: Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 2012, 150:1147-1157.
  • [24]Jones KA, Peterlin BM: Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem 1994, 63:717-743.
  • [25]Alcami J, Lain De Lera T, Folgueira L, Pedraza MA, Jacque JM, Bachelerie F, Noriega AR, Hay RT, Harrich D, Gaynor RB, et al.: Absolute dependence on kappa B responsive elements for initiation and Tat-mediated amplification of HIV transcription in blood CD4 T lymphocytes. Embo J 1995, 14:1552-1560.
  • [26]Berkhout B, Silverman RH, Jeang KT: Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 1989, 59:273-282.
  • [27]Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O: P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997, 11:2633-2644.
  • [28]Wei P, Garber ME, Fang SM, Fischer WH, Jones KA: A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998, 92:451-462.
  • [29]Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH: Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997, 11:2622-2632.
  • [30]Berkhout B, Jeang KT: Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 1992, 66:139-149.
  • [31]Lu X, Welsh TM, Peterlin BM: The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by Tat. J Virol 1993, 67:1752-1760.
  • [32]Olsen HS, Rosen CA: Contribution of the TATA motif to Tat-mediated transcriptional activation of human immunodeficiency virus gene expression. J Virol 1992, 66:5594-5597.
  • [33]Ou SH, Garcia-Martinez LF, Paulssen EJ, Gaynor RB: Role of flanking E box motifs in human immunodeficiency virus type 1 TATA element function. J Virol 1994, 68:7188-7199.
  • [34]Suñé C, Garcia-Blanco MA: Sp1 transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J Virol 1995, 69:6572-6576.
  • [35]Montanuy I, Torremocha R, Hernandez-Munain C, Suñé C: Promoter influences transcription elongation: TATA-box element mediates the assembly of processive transcription complexes responsive to cyclin-dependent kinase 9. J Biol Chem 2008, 283:7368-7378.
  • [36]Kato H, Sumimoto H, Pognonec P, Chen CH, Rosen CA, Roeder RG: HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev 1992, 6:655-666.
  • [37]Kashanchi F, Piras G, Radonovich MF, Duvall JF, Fattaey A, Chiang CM, Roeder RG, Brady JN: Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature 1994, 367:295-299.
  • [38]Suñé C, Garcia-Blanco MA: Transcriptional trans activation by human immunodeficiency virus type 1 Tat requires specific coactivators that are not basal factors. J Virol 1995, 69:3098-3107.
  • [39]Veschambre P, Roisin A, Jalinot P: Biochemical and functional interaction of the human immunodeficiency virus type 1 Tat transactivator with the general transcription factor TFIIB. J Gen Virol 1997, 78(Pt 9):2235-2245.
  • [40]Parada CA, Roeder RG: Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996, 384:375-378.
  • [41]Wu-Baer F, Sigman D, Gaynor RB: Specific binding of RNA polymerase II to the human immunodeficiency virus trans-activating region RNA is regulated by cellular cofactors and Tat. Proc Natl Acad Sci U S A 1995, 92:7153-7157.
  • [42]Raha T, Cheng SW, Green MR: HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol 2005, 3:e44.
  • [43]Lusic M, Marcello A, Cereseto A, Giacca M: Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 2003, 22:6550-6561.
  • [44]Wilhelm E, Doyle MC, Nzaramba I, Magdzinski A, Dumais N, Bell B: CTGC motifs within the HIV core promoter specify Tat-responsive pre-initiation complexes. Retrovirology 2012, 9:62. BioMed Central Full Text
  • [45]Peterlin BM, Price DH: Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006, 23:297-305.
  • [46]Coiras M, Lopez-Huertas MR, Perez-Olmeda M, Alcami J: Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 2009, 7:798-812.
  • [47]Ott M, Geyer M, Zhou Q: The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 2011, 10:426-435.
  • [48]Zhou Q, Li T, Price DH: RNA polymerase II elongation control. Annu Rev Biochem 2012, 81:119-143.
  • [49]Suñé C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA: CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol 1997, 17:6029-6039.
  • [50]Suñé C, Garcia-Blanco MA: Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 1999, 19:4719-4728.
  • [51]Sanchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C: Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol Cell Biol 2006, 26:4998-5014.
  • [52]Carty SM, Goldstrohm AC, Suñé C, Garcia-Blanco MA, Greenleaf AL: Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc Natl Acad Sci USA 2000, 97:9015-9020.
  • [53]Montes M, Cloutier A, Sanchez-Hernandez N, Michelle L, Lemieux B, Blanchette M, Hernandez-Munain C, Chabot B, Suñé C: TCERG1 regulates alternative splicing of Bcl-x gene by modulating the rate of RNAPII transcription. Mol Cell Biol 2012, 32:751-762.
  • [54]Singh J, Padgett RA: Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009, 16:1128-1133.
  • [55]Lin KT, Lu RM, Tarn WY: The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol 2004, 24:9176-9185.
  • [56]Smith MJ, Kulkarni S, Pawson T: FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol Cell Biol 2004, 24:9274-9285.
  • [57]Buratowski S: The CTD code. Nat Struct Biol 2003, 10:679-680.
  • [58]Egloff S, Murphy S: Cracking the RNA polymerase II CTD code. Trends Genet 2008, 24:280-288.
  • [59]Fiscus SA, Pilcher CD, Miller WC, Powers KA, Hoffman IF, Price M, Chilongozi DA, Mapanje C, Krysiak R, Gama S, et al.: Rapid, real-time detection of acute HIV infection in patients in Africa. J Infect Dis 2007, 195:416-424.
  • [60]Garcia-Perez J, Sanchez-Palomino S, Perez-Olmeda M, Fernandez B, Alcami J: A new strategy based on recombinant viruses as a tool for assessing drug susceptibility of human immunodeficiency virus type 1. J Med Virol 2007, 79:127-137.
  • [61]Zhou Q, Chen D, Pierstorff E, Luo K: Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. Embo J 1998, 17:3681-3691.
  • [62]Foskett SM, Ghose R, Tang DN, Lewis DE, Rice AP: Antiapoptotic function of Cdk9 (TAK/P-TEFb) in U937 promonocytic cells. J Virol 2001, 75:1220-1228.
  • [63]Majello B, Napolitano G, Giordano A, Lania L: Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo. Oncogene 1999, 18:4598-4605.
  • [64]Pearson JL, Robinson TJ, Munoz MJ, Kornblihtt AR, Garcia-Blanco MA: Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J Biol Chem 2008, 283:7949-7961.
  • [65]Ghazi A, Henis-Korenblit S, Kenyon C: A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. PLoS Genet 2009, 5:e1000639.
  • [66]Miller HB, Saunders KO, Tomaras GD, Garcia-Blanco MA: Tat-SF1 is not required for Tat transactivation but does regulate the relative levels of unspliced and spliced HIV-1 RNAs. PLoS One 2009, 4:e5710.
  • [67]Jablonski JA, Amelio AL, Giacca M, Caputi M: The transcriptional transactivator Tat selectively regulates viral splicing. Nucleic Acids Res 2010, 38:1249-1260.
  • [68]He N, Liu M, Hsu J, Xue Y, Chou S, Burlingame A, Krogan NJ, Alber T, Zhou Q: HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 2010, 38:428-438.
  • [69]Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M: HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010, 38:439-451.
  • [70]Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW: An RNA polymerase II elongation factor encoded by the human ELL gene. Science 1996, 271:1873-1876.
  • [71]Shilatifard A, Duan DR, Haque D, Florence C, Schubach WH, Conaway JW, Conaway RC: ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc Natl Acad Sci USA 1997, 94:3639-3643.
  • [72]Nagel JE, Smith RJ, Shaw L, Bertak D, Dixit VD, Schaffer EM, Taub DD: Identification of genes differentially expressed in T cells following stimulation with the chemokines CXCL12 and CXCL10. BMC Immunol 2004, 5:17. BioMed Central Full Text
  • [73]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319:921-926.
  • [74]Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, et al.: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135:49-60.
  • [75]Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008, 4:495-504.
  • [76]Murali TM, Dyer MD, Badger D, Tyler BM, Katze MG: Network-based prediction and analysis of HIV dependency factors. PLoS Comput Biol 2011, 7:e1002164.
  • [77]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
  • [78]Alvarez-Fernandez C, Crespo Guardo A, Garcia-Perez J, Garcia F, Blanco J, Escriba-Garcia L, Gatell JM, Alcami J, Plana M, Sanchez-Palomino S: Generation and Characterization of a Defective HIV-1 Virus as an Immunogen for a Therapeutic Vaccine. PLoS One 2012, 7:e48848.
  • [79]Bachelerie F, Alcami J, Arenzana-Seisdedos F, Virelizier JL: HIV enhancer activity perpetuated by NF-kappa B induction on infection of monocytes. Nature 1991, 350:709-712.
  • [80]Arenzana-Seisdedos F, Fernandez B, Dominguez I, Jacque JM, Thomas D, Diaz-Meco MT, Moscat J, Virelizier JL: Phosphatidylcholine hydrolysis activates NF-kappa B and increases human immunodeficiency virus replication in human monocytes and T lymphocytes. J Virol 1993, 67:6596-6604.
  • [81]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [82]Jablonski JA, Caputi M: Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol 2009, 83:981-992.
  • [83]Lain De Lera T, Folgueira L, Martin AG, Dargemont C, Pedraza MA, Bermejo M, Bonay P, Fresno M, Alcami J: Expression of IkappaBalpha in the nucleus of human peripheral blood T lymphocytes. Oncogene 1999, 18:1581-1588.
  文献评价指标  
  下载次数:88次 浏览次数:18次