期刊论文详细信息
Retrovirology
Differential inhibition of LINE1 and LINE2 retrotransposition by vertebrate AID/APOBEC proteins
Nika Lovšin2  Erez Y Levanon3  Binyamin A Knisbacher3  Toni Petan1  Maruška Budič2  Nataša Lindič2 
[1] Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia;Department of Chemistry and Biochemistry, Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia;The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
关键词: Retrotransposon;    Cytidine deaminase;    Zebrafish APOBEC2;    LINE1;    Zebrafish LINE2;    Lizard APOBEC1;    ORF1p;    APOBEC3;    AID;    G to A hypermutation;   
Others  :  805691
DOI  :  10.1186/1742-4690-10-156
 received in 2013-08-04, accepted in 2013-12-02,  发布年份 2013
PDF
【 摘 要 】

Background

The role of AID/APOBEC proteins in the mammalian immune response against retroviruses and retrotransposons is well established. G to A hypermutations, the hallmark of their cytidine deaminase activity, are present in several mammalian retrotransposons. However, the role of AID/APOBEC proteins in non-mammalian retroelement restriction is not completely understood.

Results

Here we provide the first evidence of anti-retroelement activity of a reptilian APOBEC protein. The green anole lizard A1 protein displayed potent DNA mutator activity and inhibited ex vivo retrotransposition of LINE1 and LINE2 ORF1 protein encoding elements, displaying a mechanism of action similar to that of the human A1 protein. In contrast, the human A3 proteins did not require ORF1 protein to inhibit LINE retrotransposition, suggesting a differential mechanism of anti-LINE action of A1 proteins, which emerged in amniotes, and A3 proteins, exclusive to placental mammals. In accordance, genomic analyses demonstrate differential G to A DNA editing of LINE retrotransposons in the lizard genome, which is also the first evidence for G to A DNA editing in non-mammalian genomes.

Conclusion

Our data suggest that vertebrate APOBEC proteins differentially inhibit the retrotransposition of LINE elements and that the anti-retroelement activity of APOBEC proteins predates mammals.

【 授权许可】

   
2013 Lindič et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708082302901.pdf 1434KB PDF download
Figure 9. 49KB Image download
Figure 8. 26KB Image download
Figure 7. 69KB Image download
Figure 6. 63KB Image download
Figure 5. 31KB Image download
Figure 4. 42KB Image download
Figure 3. 23KB Image download
Figure 2. 76KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
  • [2]Goodier JL, Kazazian HH Jr: Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 2008, 135:23-35.
  • [3]Khazina E, Truffault V, Buttner R, Schmidt S, Coles M, Weichenrieder O: Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat Struct Mol Biol 2011, 18:1006-1014.
  • [4]Khazina E, Weichenrieder O: Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci U S A 2009, 106:731-736.
  • [5]Holmes SE, Singer MF, Swergold GD: Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J Biol Chem 1992, 267:19765-19768.
  • [6]Hohjoh H, Singer MF: Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 1996, 15:630-639.
  • [7]Kolosha VO, Martin SL: High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J Biol Chem 2003, 278:8112-8117.
  • [8]Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, Gilbert N: Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 2010., 6
  • [9]Feng Q, Moran JV, Kazazian HH Jr, Boeke JD: Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 1996, 87:905-916.
  • [10]Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A: Reverse transcriptase encoded by a human transposable element. Science 1991, 254:1808-1810.
  • [11]Sugano T, Kajikawa M, Okada N: Isolation and characterization of retrotransposition-competent LINEs from zebrafish. Gene 2006, 365:74-82.
  • [12]Kajikawa M, Okada N: LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 2002, 111:433-444.
  • [13]Kajikawa M, Sugano T, Sakurai R, Okada N: Low dependency of retrotransposition on the ORF1 protein of the zebrafish LINE, ZfL2-1. Gene 2012, 499:41-47.
  • [14]Esnault C, Maestre J, Heidmann T: Human LINE retrotransposons generate processed pseudogenes. Nat Genet 2000, 24:363-367.
  • [15]Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV: Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 2001, 21:1429-1439.
  • [16]Dewannieux M, Esnault C, Heidmann T: LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003, 35:41-48.
  • [17]Okada N, Hamada M, Ogiwara I, Ohshima K: SINEs and LINEs share common 3′ sequences: a review. Gene 1997, 205:229-243.
  • [18]Lovšin N, Gubenšek F, Kordiš D: Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Mol Biol Evol 2001, 18:2213-2224.
  • [19]Kordiš D, Lovšin N, Gubenšek F: Phylogenomic analysis of the L1 retrotransposons in Deuterostomia. Syst Biol 2006, 55:886-901.
  • [20]Piskurek O, Nishihara H, Okada N: The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene 2009, 441:111-118.
  • [21]Furano AV, Duvernell DD, Boissinot S: L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 2004, 20:9-14.
  • [22]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [23]Conticello SG: The AID/APOBEC family of nucleic acid mutators. Genome Biol 2008, 9:229.
  • [24]Severi F, Chicca A, Conticello SG: Analysis of reptilian APOBEC1 suggests that RNA editing may not be its ancestral function. Mol Biol Evol 2011, 28:1125-1129.
  • [25]Novick PA, Basta H, Floumanhaft M, McClure MA, Boissinot S: The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. Mol Biol Evol 2009, 26:1811-1822.
  • [26]Rogozin IB, Basu MK, Jordan IK, Pavlov YI, Koonin EV: APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 2005, 4:1281-1285.
  • [27]Kordiš D: Transposable elements in reptilian and avian (sauropsida) genomes. Cytogenet Genome Research 2009, 127:94-111.
  • [28]Bohne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN: Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 2008, 16:203-215.
  • [29]Sawyer SL, Emerman M, Malik HS: Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004, 2:E275.
  • [30]OhAinle M, Kerns JA, Li MM, Malik HS, Emerman M: Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 2008, 4:249-259.
  • [31]OhAinle M, Kerns JA, Malik HS, Emerman M: Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 2006, 80:3853-3862.
  • [32]Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C: Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 2003, 19:674-678.
  • [33]Malik HS, Burke WD, Eickbush TH: The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 1999, 16:793-805.
  • [34]Malik HS, Eickbush TH: The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol Biol Evol 1998, 15:1123-1134.
  • [35]Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS: Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol 2005, 22:367-377.
  • [36]Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR: DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008, 135:1201-1212.
  • [37]Etard C, Roostalu U, Strahle U: Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. J Cell Biol 2010, 189:527-539.
  • [38]Sato Y, Probst HC, Tatsumi R, Ikeuchi Y, Neuberger MS, Rada C: Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. J Biol Chem 2010, 285:7111-7118.
  • [39]Navaratnam N, Morrison JR, Bhattacharya S, Patel D, Funahashi T, Giannoni F, Teng BB, Davidson NO, Scott J: The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 1993, 268:20709-20712.
  • [40]Teng B, Burant CF, Davidson NO: Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 1993, 260:1816-1819.
  • [41]Blanc V, Davidson NO: APOBEC-1-mediated RNA editing. Wiley Interdiscip Rev Syst Biol Med 2010, 2:594-602.
  • [42]Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002, 79:285-296.
  • [43]Li MM, Emerman M: Polymorphism in human APOBEC3H affects a phenotype dominant for subcellular localization and antiviral activity. J Virol 2011, 85:8197-8207.
  • [44]Arias JF, Koyama T, Kinomoto M, Tokunaga K: Retroelements versus APOBEC3 family members: No great escape from the magnificent seven. Front Microbiol 2012, 3:275.
  • [45]Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR, Malim MH, Sheehy AM: Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 2005, 15:166-170.
  • [46]Bishop KN, Holmes RK, Malim MH: Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 2006, 80:8450-8458.
  • [47]Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG: Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 2007, 35:7096-7108.
  • [48]Horn AV, Klawitter S, Held U, Berger A, Jaguva Vasudevan AA, Bock A, Hofmann H, Hanschmann KM, Trosemeier JH, Flory E, et al.: Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Res 2013. in press
  • [49]Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I, Landau NR, Weitzman MD: APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 2006, 16:480-485.
  • [50]Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D, Hance AJ, Heidmann T, Schwartz O: APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 2005, 433:430-433.
  • [51]Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS, Moran JV, Cullen BR: Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci U S A 2006, 103:8780-8785.
  • [52]Schumacher AJ, Nissley DV, Harris RS: APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci U S A 2005, 102:9854-9859.
  • [53]Muckenfuss H, Hamdorf M, Held U, Perkovic M, Lower J, Cichutek K, Flory E, Schumann GG, Munk C: APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 2006, 281:22161-22172.
  • [54]Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A, Kurata T, Sata T, Tokunaga K: All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res 2007, 35:2955-2964.
  • [55]Ikeda T, Abd El Galil KH, Tokunaga K, Maeda K, Sata T, Sakaguchi N, Heidmann T, Koito A: Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons. Nucleic Acids Res 2011, 39:5538-5554.
  • [56]MacDuff DA, Demorest ZL, Harris RS: AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res 2009, 37:1854-1867.
  • [57]Zaranek AW, Levanon EY, Zecharia T, Clegg T, Church GM: A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing. PLoS Genet 2010, 6:e1000954.
  • [58]Carmi S, Church GM, Levanon EY: Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. Nat Commun 2011, 2:519.
  • [59]Macduff DA, Harris RS: Directed DNA deamination by AID/APOBEC3 in immunity. Curr Biol 2006, 16:R186-189.
  • [60]Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr: High frequency retrotransposition in cultured mammalian cells. Cell 1996, 87:917-927.
  • [61]Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR: APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 2006, 34:89-95.
  • [62]Harris RS, Petersen-Mahrt SK, Neuberger MS: RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 2002, 10:1247-1253.
  • [63]Petersen-Mahrt SK, Harris RS, Neuberger MS: AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002, 418:99-103.
  • [64]Wang M, Rada C, Neuberger MS: A high-throughput assay for DNA deaminases. Methods Mol Biol 2011, 718:171-184.
  • [65]Stenglein MD, Harris RS: APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 2006, 281:16837-16841.
  • [66]Niewiadomska AM, Tian C, Tan L, Wang T, Sarkis PT, Yu XF: Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with high-molecular-mass-complex formation or P-body association. J Virol 2007, 81:9577-9583.
  • [67]Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS: APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol 2010, 17:222-229.
  • [68]Narvaiza I, Linfesty DC, Greener BN, Hakata Y, Pintel DJ, Logue E, Landau NR, Weitzman MD: Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog 2009, 5:e1000439.
  • [69]Bulliard Y, Narvaiza I, Bertero A, Peddi S, Rohrig UF, Ortiz M, Zoete V, Castro-Diaz N, Turelli P, Telenti A, et al.: Structure-function analyses point to a polynucleotide-accommodating groove essential for APOBEC3A restriction activities. J Virol 2011, 85:1765-1776.
  • [70]Mitra M, Hercik K, Byeon IJ, Ahn J, Hill S, Hinchee-Rodriguez K, Singer D, Byeon CH, Charlton LM, Nam G, et al.: Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties. Nucleic Acids Res 2013. in press
  • [71]Bogerd HP, Wiegand HL, Doehle BP, Cullen BR: The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. Virology 2007, 364:486-493.
  • [72]Lee YN, Malim MH, Bieniasz PD: Hypermutation of an ancient human retrovirus by APOBEC3G. J Virol 2008, 82:8762-8770.
  • [73]Esnault C, Priet S, Ribet D, Heidmann O, Heidmann T: Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo “traces” on the murine IAPE and human HERV-K elements. Retrovirology 2008, 5:75. BioMed Central Full Text
  • [74]Armitage AE, Katzourakis A, de Oliveira T, Welch JJ, Belshaw R, Bishop KN, Kramer B, McMichael AJ, Rambaut A, Iversen AK: Conserved footprints of APOBEC3G on Hypermutated human immunodeficiency virus type 1 and human endogenous retrovirus HERV-K(HML2) sequences. J Virol 2008, 82:8743-8761.
  • [75]Kolosha VO, Martin SL: In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci U S A 1997, 94:10155-10160.
  • [76]Nakamura M, Okada N, Kajikawa M: Self-interaction, nucleic acid binding, and nucleic acid chaperone activities are unexpectedly retained in the unique ORF1p of zebrafish LINE. Mol Cell Biol 2012, 32:458-469.
  • [77]Liddament MT, Brown WL, Schumacher AJ, Harris RS: APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 2004, 14:1385-1391.
  • [78]Dang Y, Wang X, Esselman WJ, Zheng YH: Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol 2006, 80:10522-10533.
  • [79]Okeoma CM, Lovsin N, Peterlin BM, Ross SR: APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 2007, 445:927-930.
  • [80]Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM: Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 2004, 78:6073-6076.
  • [81]Dang Y, Siew LM, Wang X, Han Y, Lampen R, Zheng YH: Human cytidine deaminase APOBEC3H restricts HIV-1 replication. J Biol Chem 2008, 283:11606-11614.
  • [82]Rose PP, Korber BT: Detecting hypermutations in viral sequences with an emphasis on G – A hypermutation. Bioinformatics 2000, 16:400-401.
  • [83]Kersting C, Tidow N, Schmidt H, Liedtke C, Neumann J, Boecker W, van Diest PJ, Brandt B, Buerger H: Gene dosage PCR and fluorescence in situ hybridization reveal low frequency of egfr amplifications despite protein overexpression in invasive breast carcinoma. Lab Invest 2004, 84:582-587.
  • [84]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002., 3RESEARCH0034
  • [85]Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004, 32:D493-496.
  • [86]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, et al.: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15:1451-1455.
  • [87]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, 11-21. Chapter 19:Unit 19 10
  • [88]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11:R86. BioMed Central Full Text
  • [89]Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, et al.: The UCSC Genome Browser Database. Nucleic Acids Res 2003, 31:51-54.
  • [90]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110:462-467.
  • [91]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  文献评价指标  
  下载次数:10次 浏览次数:4次