期刊论文详细信息
Virology Journal
Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs
Juan C Gallego-Gomez1  Fernando Almazán2  Natalia Campillo-Pedroza1  Jose A Usme-Ciro1 
[1] Viral Vector Core & Gene Therapy, Neuroscience Group, Sede de Investigación Universitaria – SIU, Universidad de Antioquia, Medellin, Colombia;Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, Madrid 28049, Spain
关键词: Viral vectors;    Non-canonical pathways;    microRNAs;    Gene therapy;    Cytoplasmic RNA viruses;   
Others  :  1149879
DOI  :  10.1186/1743-422X-10-185
 received in 2012-11-06, accepted in 2013-05-26,  发布年份 2013
PDF
【 摘 要 】

Viral vectors have become the best option for the delivery of therapeutic genes in conventional and RNA interference-based gene therapies. The current viral vectors for the delivery of small regulatory RNAs are based on DNA viruses and retroviruses/lentiviruses. Cytoplasmic RNA viruses have been excluded as viral vectors for RNAi therapy because of the nuclear localization of the microprocessor complex and the potential degradation of the viral RNA genome during the excision of any virus-encoded pre-microRNAs. However, in the last few years, the presence of several species of small RNAs (e.g., virus-derived small interfering RNAs, virus-derived short RNAs, and unusually small RNAs) in animals and cell cultures that are infected with cytoplasmic RNA viruses has suggested the existence of a non-canonical mechanism of microRNA biogenesis. Several studies have been conducted on the tick-borne encephalitis virus and on the Sindbis virus in which microRNA precursors were artificially incorporated and demonstrated the production of mature microRNAs. The ability of these viruses to recruit Drosha to the cytoplasm during infection resulted in the efficient processing of virus-encoded microRNA without the viral genome entering the nucleus. In this review, we discuss the relevance of these findings with an emphasis on the potential use of cytoplasmic RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs.

【 授权许可】

   
2013 Usme-Ciro et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405113115112.pdf 946KB PDF download
Figure 2. 40KB Image download
Figure 1. 136KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Verma IM, Weitzman MD: Gene therapy: twenty-first century medicine. Annu Rev Biochem 2005, 74:711-738.
  • [2]Jackson DA, Symons RH, Berg P: Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of escherichia coli. Proc Natl Acad Sci USA 1972, 69:2904-2909.
  • [3]Cohen SN, Chang AC, Boyer HW, Helling RB: Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 1973, 70:3240-3244.
  • [4]Wei CM, Gibson M, Spear PG, Scolnick EM: Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1. J Virol 1981, 39:935-944.
  • [5]Tabin CJ, Hoffmann JW, Goff SP, Weinberg RA: Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Mol Cell Biol 1982, 2:426-436.
  • [6]Shimotohno K, Temin HM: Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus. Cell 1981, 26:67-77.
  • [7]Kelly EB: Gene Therapy. Westport, CT: Greenwood Press; 2007.
  • [8]Gene Therapy Clinical Trials Worldwide. http://www.wiley.com//legacy/wileychi/genmed/clinical/ webcite
  • [9]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998, 391:806-811.
  • [10]The official Web site of the nobel prize. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/ webcite
  • [11]Kim DH, Rossi JJ: Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007, 8:173-184.
  • [12]Davidson BL, McCray PB Jr: Current prospects for RNA interference-based therapies. Nat Rev Genet 2011, 12:329-340.
  • [13]Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009, 11:228-234.
  • [14]Newman MA, Hammond SM: Emerging paradigms of regulated microRNA processing. Genes Dev 2010, 24:1086-1092.
  • [15]Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R: The microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432:235-240.
  • [16]Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003, 17:3011-3016.
  • [17]Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD: A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 2001, 293:834-838.
  • [18]Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. Elegan. Genes Dev 2001, 15:2654-2659.
  • [19]Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10:126-139.
  • [20]Liu YP, Berkhout B: MiRNA cassettes in viral vectors: problems and solutions. Biochim Biophys Acta 1809, 2011:732-745.
  • [21]Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, et al.: Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005, 37:1281-1288.
  • [22]Boudreau RL, Martins I, Davidson BL: Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2009, 17:169-175.
  • [23]Amberger J, Bocchini CA, Scott AF, Hamosh A: McKusick’s Online mendelian inheritance in man (OMIM). Nucleic Acids Res 2009, 37:D793-D796.
  • [24]Thomas CE, Ehrhardt A, Kay MA: Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003, 4:346-358.
  • [25]Vilaboa N, Voellmy R: Deliberate regulation of therapeutic transgenes. In Gene and Cell Therapy: Therapeutic Mechanisms and Strategies. 3rd edition. Edited by Templeton NS. Boca Raton, FL: CRC Press; 2009:619-636.
  • [26]Heiss BL, Maximova OA, Pletnev AG: Insertion of microRNA targets into the flavivirus genome alters its highly neurovirulent phenotype. J Virol 2011, 85:1464-1472.
  • [27]Ylosmaki E, Martikainen M, Hinkkanen A, Saksela K: Attenuation of semliki forest virus neurovirulence by microRNA-mediated detargeting. J Virol 2013, 87:335-344.
  • [28]Kwon I, Schaffer DV: Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2008, 25:489-499.
  • [29]Perri S, Greer CE, Thudium K, Doe B, Legg H, Liu H, Romero RE, Tang Z, Bin Q, Dubensky TW Jr, et al.: An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J Virol 2003, 77:10394-10403.
  • [30]Shustov AV, Mason PW, Frolov I: Production of pseudoinfectious yellow fever virus with a two-component genome. J Virol 2007, 81:11737-11748.
  • [31]Yoshii K, Goto A, Kawakami K, Kariwa H, Takashima I: Construction and application of chimeric virus-like particles of tick-borne encephalitis virus and mosquito-borne japanese encephalitis virus. J Gen Virol 2008, 89:200-211.
  • [32]Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG: Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 2012, 20:513-524.
  • [33]Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441:537-541.
  • [34]Grimm D, Wang L, Lee JS, Schurmann N, Gu S, Borner K, Storm TA, Kay MA: Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 2010, 120:3106-3119.
  • [35]Vickers TA, Lima WF, Nichols JG, Crooke ST: Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Res 2007, 35:6598-6610.
  • [36]Hewson R: RNA viruses: emerging vectors for vaccination and gene therapy. Mol Med Today 2000, 6:28-35.
  • [37]Flint SJ, Enquist LW, Racaniello VR, Skalka AM: Principles of Virology. 3rd edition. Washington, DC: ASM Press; 2009.
  • [38]Uchil PD, Kumar AV, Satchidanandam V: Nuclear localization of flavivirus RNA synthesis in infected cells. J Virol 2006, 80:5451-5464.
  • [39]Lindenbach BD, Thiel HJ, Rice CM: Flaviviridae: the viruses and their replication. In Fields Virology. 5th edition. Edited by Knipe DM, Howley PM. Philadelphia: Lippincott Williams & Wilkins; 2007:1102-1153.
  • [40]Cullen BR: Five questions about viruses and microRNAs. PLoS Pathog 2010, 6:e1000787.
  • [41]Myles KM, Wiley MR, Morazzani EM, Adelman ZN: Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci USA 2008, 105:19938-19943.
  • [42]Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, et al.: Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 2010, 6:e1000764.
  • [43]Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B, Ebel GD, Olson KE, Blair CD: Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis 2010, 4:e848.
  • [44]Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD: C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 2010, 4:e856.
  • [45]Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD: Aedes aegypti uses RNA interference in defense against sindbis virus infection. BMC Microbiol 2008, 8:47. BioMed Central Full Text
  • [46]Blair CD: Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol 2011, 6:265-277.
  • [47]Cirimotich CM, Scott JC, Phillips AT, Geiss BJ, Olson KE: Suppression of RNA interference increases alphavirus replication and virus-associated mortality in aedes aegypti mosquitoes. BMC Microbiol 2009, 9:49. BioMed Central Full Text
  • [48]Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM: Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 2012, 8:e1002470.
  • [49]Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, Barbacioru C, Monighetti C, Campbell CL: Small RNA profiling of dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 2011, 11:45. BioMed Central Full Text
  • [50]Vodovar N, Bronkhorst AW, van Cleef KW, Miesen P, Blanc H, van Rij RP, Saleh MC: Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 2012, 7:e30861.
  • [51]Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S: West nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 2012, 40:2210-2223.
  • [52]Li Z, Kim SW, Lin Y, Moore PS, Chang Y, John B: Characterization of viral and human RNAs smaller than canonical MicroRNAs. J Virol 2009, 83:12751-12758.
  • [53]Ruby JG, Jan CH, Bartel DP: Intronic microRNA precursors that bypass drosha processing. Nature 2007, 448:83-86.
  • [54]Flynt AS, Greimann JC, Chung WJ, Lima CD, Lai EC: MicroRNA biogenesis via splicing and exosome-mediated trimming in drosophila. Mol Cell 2010, 38:900-907.
  • [55]Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G: A human snoRNA with microRNA-like functions. Mol Cell 2008, 32:519-528.
  • [56]Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS: Small RNAs derived from snoRNAs. RNA 2009, 15:1233-1240.
  • [57]Miyoshi K, Miyoshi T, Siomi H: Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 2010, 284:95-103.
  • [58]Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G: Filtering of deep sequencing data reveals the existence of abundant dicer-dependent small RNAs derived from tRNAs. RNA 2009, 15:2147-2160.
  • [59]Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R: Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev 2008, 22:2773-2785.
  • [60]Bogerd HP, Karnowski HW, Cai X, Shin J, Pohlers M, Cullen BR: A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. Mol Cell 2010, 37:135-142.
  • [61]Havens MA, Reich AA, Duelli DM, Hastings ML: Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 2012, 40:4626-4640.
  • [62]Skalsky RL, Cullen BR: Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010, 64:123-141.
  • [63]Kincaid RP, Burke JM, Sullivan CS: RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci USA 2012, 109:3077-3082.
  • [64]Klase Z, Kale P, Winograd R, Gupta MV, Heydarian M, Berro R, McCaffrey T, Kashanchi F: HIV-1 TAR element is processed by dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007, 8:63. BioMed Central Full Text
  • [65]Varble A, Chua MA, Perez JT, Manicassamy B, Garcia-Sastre A, TenOever BR: Engineered RNA viral synthesis of microRNAs. Proc Natl Acad Sci USA 2010, 107:11519-11524.
  • [66]Rouha H, Thurner C, Mandl CW: Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res 2010, 38:8328-8337.
  • [67]Shapiro JS, Varble A, Pham AM, Tenoever BR: Noncanonical cytoplasmic processing of viral microRNAs. RNA 2010, 16:2068-2074.
  • [68]Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, Jaker C, Hock J, Meister G, Grasser FA: Epstein-barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 2008, 36:666-675.
  • [69]Shapiro JS, Langlois RA, Pham AM, Tenoever BR: Evidence for a cytoplasmic microprocessor of pri-miRNAs. RNA 2012, 18:1338-1346.
  • [70]Tang X, Zhang Y, Tucker L, Ramratnam B: Phosphorylation of the RNase III enzyme drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res 2010, 38:6610-6619.
  • [71]Tang X, Li M, Tucker L, Ramratnam B: Glycogen synthase kinase 3 beta (GSK3beta) phosphorylates the RNAase III enzyme drosha at S300 and S302. PLoS One 2011, 6:e20391.
  • [72]Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378:785-789.
  • [73]Lee CJ, Liao CL, Lin YL: Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 2005, 79:8388-8399.
  • [74]Varble A, ten Oever BR: Implications of RNA virus-produced miRNAs. RNA Biol 2011, 8:190-194.
  • [75]Langlois RA, Shapiro JS, Pham AM, tenOever BR: In vivo delivery of cytoplasmic RNA virus-derived miRNAs. Mol Ther 2012, 20:367-375.
  • [76]Nguyen T, Menocal EM, Harborth J, Fruehauf JH: RNAi therapeutics: an update on delivery. Curr Opin Mol Ther 2008, 10:158-167.
  • [77]Pijlman GP, Suhrbier A, Khromykh AA: Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 2006, 6:135-145.
  • [78]Wahlfors JJ, Zullo SA, Loimas S, Nelson DM, Morgan RA: Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther 2000, 7:472-480.
  • [79]Agapov EV, Frolov I, Lindenbach BD, Pragai BM, Schlesinger S, Rice CM: Noncytopathic sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA 1998, 95:12989-12994.
  • [80]Varnavski AN, Young PR, Khromykh AA: Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based kunjin virus replicon vectors. J Virol 2000, 74:4394-4403.
  • [81]Harvey TJ, Liu WJ, Wang XJ, Linedale R, Jacobs M, Davidson A, Le TT, Anraku I, Suhrbier A, Shi PY, Khromykh AA: Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J Virol 2004, 78:531-538.
  • [82]Polo JM, Belli BA, Driver DA, Frolov I, Sherrill S, Hariharan MJ, Townsend K, Perri S, Mento SJ, Jolly DJ, et al.: Stable alphavirus packaging cell lines for sindbis virus and semliki forest virus-derived vectors. Proc Natl Acad Sci USA 1999, 96:4598-4603.
  文献评价指标  
  下载次数:9次 浏览次数:7次