期刊论文详细信息
Respiratory Research
A flavanone from Baccharis retusa (Asteraceae) prevents elastase-induced emphysema in mice by regulating NF-κB, oxidative stress and metalloproteinases
Carla M. Prado3  João Henrique G. Lago1  Niels O. Câmara4  Iolanda F.L.C. Tiberio3  Mílton A. Martins3  Luciana C. Caperuto2  Fernanda D.T.Q.S. Lopes3  Simone S. Grecco1  Alessandra Choqueta-Toledo3  Clarice R. Olivo3  Nathalia M. Pinheiro3  Laura Taguchi2 
[1] Department of Exact and Earth Sciences, Universidade Federal de São Paulo, Diadema, Brazil;Department of Biological Science, Universidade Federal de São Paulo, Rua Artur Riedel, 275 - Eldorado, Diadema, SP, Brazil;Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil;Department of Immunology, Biological Institute, Universidade de São Paulo, São Paulo, Brazil
关键词: Experimental models;    Lung remodeling;    Oxidative stress;    NF-κB;    Flavonoid;    Emphysema;   
Others  :  1233538
DOI  :  10.1186/s12931-015-0233-3
 received in 2015-02-05, accepted in 2015-06-08,  发布年份 2015
【 摘 要 】

Background

Pulmonary emphysema is characterized by irreversible airflow obstruction, inflammation, oxidative stress imbalance and lung remodeling, resulting in reduced lung function and a lower quality of life. Flavonoids are plant compounds with potential anti-inflammatory and antioxidant effects that have been used in folk medicine. Our aim was to determine whether treatment with sakuranetin, a flavonoid extracted from the aerial parts of Baccharis retusa, interferes with the development of lung emphysema.

Methods

Intranasal saline or elastase was administered to mice; the animals were then treated with sakuranetin or vehicle 2 h later and again on days 7, 14 and 28. We evaluated lung function and the inflammatory profile in bronchoalveolar lavage fluid (BALF). The lungs were removed to evaluate alveolar enlargement, extracellular matrix fibers and the expression of MMP-9, MMP-12, TIMP-1, 8-iso-PGF-2α and p65-NF-κB in the fixed tissues as well as to evaluate cytokine levels and p65-NF-κB protein expression.

Results

In the elastase-treated animals, sakuranetin treatment reduced the alveolar enlargement, collagen and elastic fiber deposition and the number of MMP-9- and MMP-12-positive cells but increased TIMP-1 expression. In addition, sakuranetin treatment decreased the inflammation and the levels of TNF-α, IL-1β and M-CSF in the BALF as well as the levels of NF-κB and 8-iso-PGF-2α in the lungs of the elastase-treated animals. However, this treatment did not affect the changes in lung function.

Conclusion

These data emphasize the importance of oxidative stress and metalloproteinase imbalance in the development of emphysema and suggest that sakuranetin is a potent candidate that should be further investigated as an emphysema treatment. This compound may be useful for counteracting lung remodeling and oxidative stress and thus attenuating the development of emphysema.

【 授权许可】

   
2015 Taguchi et al.

附件列表
Files Size Format View
Fig. 5. 81KB Image download
Fig. 4. 63KB Image download
Fig. 3. 151KB Image download
Fig. 2. 127KB Image download
Fig. 1. 51KB Image download
Fig. 5. 81KB Image download
Fig. 4. 63KB Image download
Fig. 3. 151KB Image download
Fig. 2. 127KB Image download
Fig. 1. 51KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Global strategies for diagnosis, management and prevention of chronic obstructive pulmonary disease. 2010.
  • [2]Barnes PJ. Chronic Obstructive Pulmonary Disease. New Eng J Med. 2000; 343(4):269-280.
  • [3]Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011; 6:413-21.
  • [4]Brown V, Elborn JS, Bradley J, Ennis M. Dysregulated apoptosis and NFkappaB expression in COPD subjects. Respir Res. 2009; 10:24. BioMed Central Full Text
  • [5]Black PN, Ching PS, Beaumont B, Ranasinghe S, Taylor G, Merrilees MJ. Changes in elastic fibres in the small airways and alveoli in COPD. Eur Respir J. 2008; 31(5):998-1004.
  • [6]Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis. 2014; 9:1207-1224.
  • [7]Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015; 10:261-276.
  • [8]Morales J, Gunther G, Zanocco AL, Lemp E. Singlet oxygen reactions with flavonoids. A theoretical–experimental study. PLoS One. 2012; 7(7):e40548.
  • [9]Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT et al.. Antioxidant and Anti-inflammatory Activities of Selected Medicinal Plants Containing Phenolic and Flavonoid Compounds. J Agric Food Chem. 2013; 59(23):12361-12367.
  • [10]Prasain JK, Carlson SH, Wyss JM. Flavonoids and age-related disease: risk, benefits and critical windows. Maturitas. 2010; 66(2):163-171.
  • [11]De Martino L, Mencherini T, Mancini E, Aquino RP, De Almeida LFR, De Feo V. In Vitro Phytotoxicity and Antioxidant Activity of Selected Flavonoids. Int J Mol Sci. 2012; 13(5):5406-5419.
  • [12]Franco IJ. Ervas e plantas: a medicina dos simples. 5th ed. Imprimax, Chapecó; 1995.
  • [13]Verdi LG, Brighente IMC, Pizzolatti MG. Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Química Nova. 2005; 28:85-94.
  • [14]Grecco SS, Reimao JQ, Tempone AG, Sartorelli P, Cunha RL, Romoff P et al.. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp Parasitol. 2012; 130(2):141-5.
  • [15]Grecco SS, Reimao JQ, Tempone AG, Sartorelli P, Romoff P, Ferreira MJ et al.. Isolation of an antileishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC. (Asteraceae). Parasitol Res. 2010; 106(5):1245-1248.
  • [16]Toledo AC, Sakoda CP, Perini A, Pinheiro NM, Magalhaes RM, Grecco S et al.. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol. 2013; 168(7):1736-1749.
  • [17]Celli BR, Thomas NE, Anderson JA, Ferguson GT, Jenkins CR, Jones PW et al.. Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study. Am J Respir Crit Care Med. 2008; 178(4):332-8.
  • [18]Anciaes AM, Olivo CR, Prado CM, Kagohara KH, Pinto Tda S, Moriya HT et al.. Respiratory mechanics do not always mirror pulmonary histological changes in emphysema. Clinics (Sao Paulo). 2011; 66(10):1797-1803.
  • [19]Sango K, McDonald MP, Crawley JN, Mack ML, Tifft CJ, Skop E et al.. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet. 1996; 14(3):348-352.
  • [20]Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol. 1992; 72(1):168-178.
  • [21]Caperuto LC, Anhe GF, Cambiaghi TD, Akamine EH, Do Carmo Buonfiglio D, Cipolla-Neto J et al.. Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. Endocrinology. 2008; 149(12):6326-6335.
  • [22]Vlahos R, Bozinovski S, Hamilton JA, Anderson GP. Therapeutic potential of treating chronic obstructive pulmonary disease (COPD) by neutralising granulocyte macrophage-colony stimulating factor (GM-CSF). Pharmacol Ther. 2006; 112(1):106-115.
  • [23]Munoz-Barrutia A, Ceresa M, Artaechevarria X, Montuenga LM, Ortiz-de-Solorzano C. Quantification of lung damage in an elastase-induced mouse model of emphysema. Int J Biomed Imaging. 2012; 2012:734734.
  • [24]Kersul AL, Iglesias A, Rios A, Noguera A, Forteza A, Serra E et al.. Molecular mechanisms of inflammation during exacerbations of chronic obstructive pulmonary disease. Arch Bronconeumol. 2011; 47(4):176-83.
  • [25]Kawakami M, Matsuo Y, Yoshiura K, Nagase T, Yamashita N. Sequential and quantitative analysis of a murine model of elastase-induced emphysema. Biol Pharm Bull. 2008; 31(7):1434-1438.
  • [26]Song MY, Jeong GS, Lee HS, Kwon KS, Lee SM, Park JW et al.. Sulfuretin attenuates allergic airway inflammation in mice. Biochem Biophys Res Commun. 2010; 400(1):83-88.
  • [27]Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998; 16:225-260.
  • [28]Gasparini C, Feldmann M. NF-kappaB as a target for modulating inflammatory responses. Curr Pharm Des. 2012; 18(35):5735-5745.
  • [29]Bras NF, Goncalves R, Mateus N, Fernandes PA, Ramos MJ, de Freitas V. Inhibition of pancreatic elastase by polyphenolic compounds. J Agric Food Chem. 2010; 58(19):10668-76.
  • [30]Culpitt SV, Rogers DF, Fenwick PS, Shah P, De Matos C, Russell RE et al.. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax. 2003; 58(11):942-946.
  • [31]Lixuan Z, Jingcheng D, Wenqin Y, Jianhua H, Baojun L, Xiaotao F. Baicalin attenuates inflammation by inhibiting NF-kappaB activation in cigarette smoke induced inflammatory models. Pulm Pharmacol Ther. 2010; 23(5):411-9.
  • [32]Armstrong DA, Major JA, Chudyk A, Hamilton TA. Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. J Leukoc Biol. 2004; 75(4):641-648.
  • [33]Foronjy R, D'Armiento J. The role of collagenase in emphysema. Respir Res. 2001; 2(6):348-352. BioMed Central Full Text
  • [34]Kononov S, Brewer K, Sakai H, Cavalcante FS, Sabayanagam CR, Ingenito EP et al.. Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. Am J Respir Crit Care Med. 2001; 164(10 Pt 1):1920-1926.
  • [35]Cardoso WV, Sekhon HS, Hyde DM, Thurlbeck WM. Collagen and elastin in human pulmonary emphysema. Am Rev Respir Dis. 1993; 147(4):975-981.
  • [36]Vlahovic G, Russell ML, Mercer RR, Crapo JD. Cellular and connective tissue changes in alveolar septal walls in emphysema. Am J Respir Crit Care Med. 1999; 160(6):2086-2092.
  • [37]Spears M, Weir CJ, Smith AD, McSharry C, Chaudhuri R, Johnson M et al.. Bronchial nitric oxide flux (J'aw) is sensitive to oral corticosteroids in smokers with asthma. Respir Med. 2011; 105(12):1823-1830.
  • [38]Biselli PJ, Lopes FD, Moriya HT, Rivero DH, Toledo AC, Saldiva PH et al.. Short-term exposure of mice to cigarette smoke and/or residual oil fly ash produces proximal airspace enlargements and airway epithelium remodeling. Braz J Med Biol Res. 2011; 44(5):460-468.
  • [39]Churg A, Zhou S, Wright JL. Series "matrix metalloproteinases in lung health and disease": Matrix metalloproteinases in COPD. Eur Respir J. 2012; 39(1):197-209.
  • [40]Funada Y, Nishimura Y, Yokoyama M. Imbalance of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 is associated with pulmonary emphysema in Klotho mice. Kobe J Med Sci. 2004; 50(3–4):59-67.
  • [41]Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR et al.. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res. 2010; 11:131. BioMed Central Full Text
  • [42]Louhelainen N, Myllarniemi M, Rahman I, Kinnula VL. Airway biomarkers of the oxidant burden in asthma and chronic obstructive pulmonary disease: current and future perspectives. Int J Chron Obstruct Pulmon Dis. 2008; 3(4):585-603.
  • [43]Lago JH, Toledo-Arruda AC, Mernak M, Barrosa KH, Martins MA, Tiberio IF et al.. Structure-activity association of flavonoids in lung diseases. Molecules. 2014; 19(3):3570-3595.
  • [44]Nogueira NP, Reis PA, Laranja GA, Pinto AC, Aiub CA, Felzenszwalb I et al.. In vitro and in vivo toxicological evaluation of extract and fractions from Baccharis trimera with anti-inflammatory activity. J Ethnopharmacol. 2011; 138(2):513-522.
  文献评价指标  
  下载次数:122次 浏览次数:12次