期刊论文详细信息
Particle and Fibre Toxicology
Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China
Xiao-Guang Chen3  Guiyun Yan2  Liwang Cui4  Chunyuan Li3  Xuelian Chang2  Ning Zhou3  Daibin Zhong2  Yiji Li3  Qian Qin1 
[1] Department of Parasitology, Wenzhou Medical University, Wenzhou 325035, China;Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA;Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Education Institutes, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China;Department of Entomology, Pennsylvania State University, State College, University Park, PA 16802, USA
关键词: Metabolic detoxification enzymes;    Ace-1 mutation;    Kdr mutation;    Insecticide resistance;    Anopheles vagus;    Anopheles sinensis;   
Others  :  811800
DOI  :  10.1186/1756-3305-7-92
 received in 2014-02-02, accepted in 2014-02-27,  发布年份 2014
PDF
【 摘 要 】

Background

Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays.

Methods

The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1gene were detected by DNA sequencing and PCR-RFLP analysis, respectively.

Results

An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes.

Conclusions

Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

【 授权许可】

   
2014 Qin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709072739232.pdf 437KB PDF download
Figure 2. 106KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]WHO: World malaria report. Geneva, Switzerland: World Health Organization; 2013. Available at: http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/ webcite. webcite. Accessed February 28, 2014
  • [2]Ministry of Health: Action plan of China malaria elimination (2010-2020). Beijing: Ministry of Health of the People's Republic of China; 2010. Available at: http://whothailand.healthrepository.org/bitstream/123456789/1460/1/Action%20Plan%20of%20China%20%20Malaria%20Elimination%20_2010-2020_.pdf webcite. webcite. Accessed February 28, 2014
  • [3]Yin JH, Yang MN, Zhou SS, Wang Y, Feng J, Xia ZG: Changing malaria transmission and implications in China towards National Malaria Elimination Programme between 2010 and 2012. PLoS One 2013, 8(9):e74228.
  • [4]Coosemans M, Carnevale P: Malaria vector control: a critical review on chemical methods and insecticides. Ann Soc Belg Med Trop 1995, 75(1):13-31.
  • [5]Liu N, Xu Q, Zhu F, Zhang LEE: Pyrethroid resistance in mosquitoes. Insect Sci 2006, 13(3):159-166.
  • [6]Reigart JR, Roberts JR: Recognition and management of pesticide poisonings. 5th edition. EPA #735-R-98-003. U.S. Environmental Protection Agency; 1999:34-74.
  • [7]WHO: Global Plan for Insecticide Resistance Management in Malaria Vectors. Geneva, Switzerland: World Health Organization; 2012. Available at: http://www.who.int/malaria/publications/atoz/gpirm/en/ webcite. webcite. Accessed February 28, 2014
  • [8]WHO: World malaria report 2010. Geneva, Switzerland: World Health Organization; 2010. Available at: http://www.who.int/malaria/world_malaria_report_2010/en/ webcite. webcite. Accessed February 28, 2014
  • [9]Lin H, Lu L, Tian L, Zhou S, Wu H, Bi Y, Ho S, Liu Q: Spatial and temporal distribution of falciparum malaria in China. Malar J 2009, 8(1):130. BioMed Central Full Text
  • [10]Sheng HF, Zhou SS, Gu ZC, Zheng X: Malaria situation in the People’s Republic of China in 2002. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2003, 21(4):193-196.
  • [11]Chow C-Y: Malaria vector in China. Chinese J Entomol Special Publ 1991, 6:67-79.
  • [12]Cai XZ: Malaria control in Hainan Island during the past 40 years. Hainan Med J 1993, 4(3):1-3. (in Chinese with English abstract)
  • [13]Lu BL: Prevalence of malaria and vector research in China. Lit Inf Prev Med 2001, 7(1):98-100. (in Chinese with English abstract)
  • [14]Zeng LH, Wang SQ, Sun DW, Zhao W, Li SG, Yang X: Resistance assay of malaria vectors to four kinds of common insecticides in some endemic areas of Hainan Province. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2011, 29(3):200-203.
  • [15]Rueda LM, Pecor JE, Harrison BA: Updated distribution records for Anopheles vagus (Diptera: Culicidae) in the Republic of Philippines, and considerations regarding its secondary vector roles in Southeast Asia. Trop Biomed 2011, 28(1):181-187.
  • [16]Verhaeghen K, Van Bortel W, Trung H, Sochantha T, Keokenchanh K, Coosemans M: Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors 2010, 3(1):59. BioMed Central Full Text
  • [17]Elyazar IR, Sinka ME, Gething PW, Tarmidzi SN, Surya A, Kusriastuti R, Winarno Baird JK, Hay SI, Bangs MJ: The distribution and bionomics of Anopheles malaria vector mosquitoes in Indonesia. Adv Parasitol 2013, 83:173-266.
  • [18]Alam MS, Khan MG, Chaudhury N, Deloer S, Nazib F, Bangali AM, Haque R: Prevalence of anopheline species and their Plasmodium infection status in epidemic-prone border areas of Bangladesh. Malar J 2010, 9:15. BioMed Central Full Text
  • [19]Liu Y, Zhang H, Qiao C, Lu X, Cui F: Correlation between carboxylesterase alleles and insecticide resistance inCulex pipiens complex from China. Parasit Vectors 2011., 4(236)
  • [20]Pan J-Y, Zhou S-S, Zheng X, Huang F, Wang D-Q, Shen Y-Z, Su Y-P, Zhou G-C, Liu F, Jiang J-J: Vector capacity of Anopheles sinensis in malaria outbreak areas of central China. Parasit Vectors 2012, 5(1):136. BioMed Central Full Text
  • [21]Hemingway J, Hawkes NJ, McCarroll L, Ranson H: The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 2004, 34(7):653-665.
  • [22]Hemingway J, Georghiou GP: Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides. Pestic Biochem Physiol 1983, 19(2):167-171.
  • [23]Kamel F, Hoppin JA: Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 2004, 112(9):950-958.
  • [24]Soderlund DM, Bloomquist JR: Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 1989, 34:77-96.
  • [25]Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 1998, 7(2):179-184.
  • [26]Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 2000, 9(5):491-497.
  • [27]WHO: Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva, Switzerland: World Health Organization; 2013. Available at: http://www.who.int/malaria/publications/atoz/9789241505154/en/ webcite. webcite. Accessed February 28, 2014
  • [28]Kang S, Jung J, Lee S, Hwang H, Kim W: The polymorphism and the geographical distribution of the knockdown resistance (kdr)ofAnopheles sinensisin the Republic of Korea. Malar J 2012, 3(11):151.
  • [29]Tan W-L, Wang Z-M, Li C-X, Chu H-L, Xu Y, Dong Y-D, Wang Z-C, Chen D-Y, Liu H, Liu D-P, Liu N, Sun J, Zhao T: First report on co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province, China. PLoS ONE 2012, 7(1):e29242.
  • [30]Zhong D, Chang X, Zhou G, He Z, Fu F, Yan Z, Zhu G, Xu T, Bonizzoni M, Wang M-H, Cui L, Zheng B, Chen B, Yan G: Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis. PLoS ONE 2013, 8(2):e55475.
  • [31]Tan WL, Li CX, Wang ZM, Liu MD, Dong YD, Feng XY, Wu ZM, Guo XX, Xing D, Zhang YM, Wang ZC, Zhao TY: First detection of multiple knockdown resistance (kdr)-like mutations in voltage-gated sodium channel using three new genotyping methods in Anopheles sinensis from Guangxi Province, China. J Med Entomol 2012, 49(5):1012-1020.
  • [32]Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, Wilding CS: Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A 2012, 109(17):6614-6619.
  • [33]Essandoh J, Yawson A, Weetman D: Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malar J 2013, 12(1):404. BioMed Central Full Text
  • [34]Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M: A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc Biol Sci 2002, 269(1504):2007-2016.
  • [35]Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M: The unique mutation inace-1giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 2004, 13(1):1-7.
  • [36]Xu T, Zhong D, Chang X, Hemingway J, Fu F, Yan G, Zheng B: Anopheles sinensis mosquito insecticide resistance: comparison of three mosquito sample preparation methods in resistance measurements. Parasit Vectors 2014., 1in press
  • [37]Dong X: The Mosquito Fauna of Yunnan (Volumes one), Volume 1. Kunming: Yunnan Publishing Group Corporation, Yunnan Science & Technology Press; 2010.
  • [38]Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Zhong D, Li J, Githeko A, Yan G: Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq. PLoS ONE 2012, 7(9):e44607.
  • [39]Gonzalez Audino P, Vassena C, Barrios S, Zerba E, Picollo MI: Role of enhanced detoxication in a deltamethrin-resistant population of Triatoma infestans (Hemiptera, Reduviidae) from Argentina. Mem Inst Oswaldo Cruz 2004, 99(3):335-339.
  • [40]Penilla PR, RodrÍGuez AD, Hemingway J, Torres JL, Arredondo-JimÉNez JI, RodrÍGuez MH: Resistance management strategies in malaria vector mosquito control: baseline data for a large-scale field trial againstAnopheles albimanus in Mexico. Med Vet Entomol 1998, 12(3):217-233.
  • [41]Hosokawa M, Satoh T: Measurement of carboxylesterase (CES) activities. Curr Protoc Toxicol 2002, Suppl 10:4.7.14. 4.7.14
  • [42]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72(1–2):248-254.
  • [43]Enholm C, Kuusi T: Preparation, characterization, and measurement of hepatic lipase. Methods Enzymol 1986, 129:717-738.
  • [44]Joshi D, Park MH, Saeung A, Choochote W, Min GS: Multiplex assay to identify Korean vectors of malaria. Mol Ecol Resour 2010, 10(4):748-750.
  • [45]Zomuanpuii R, Ringngheti L, Brindha S, Gurusubramanian G, Senthil Kumar N: ITS2 characterization and Anopheles species identification of the subgenus Cellia. Acta Trop 2012, 125(3):309-319.
  • [46]Namountougou M, Simard F, Baldet T, Diabate A, Ouedraogo JB, Martin T, Dabire RK: Multiple insecticide resistance in Anopheles gambiae s.l: populations from Burkina Faso, West Africa. PLoS ONE 2012, 7(11):e48412.
  • [47]Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Van Bortel W, Denis L, Tessema DA, Getachew Y, Coosemans M, Duchateau L, Speybroeck N: Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE 2011, 6(1):e16066.
  • [48]Abbott WS: A method of computing the effectiveness of an insecticide. J Econ Entomol 1925, 18(2):265-267.
  • [49]Chareonviriyaphap T, Bangs M, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R: Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 2013, 6:280. BioMed Central Full Text
  • [50]Brooke BD: kdr: can a single mutation produce an entire insecticide resistance phenotype? Trans R Soc Trop Med Hyg 2008, 102(6):524-525.
  • [51]Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WCT: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 2009, 25(5):213-219.
  • [52]Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West P, Kleinschmidt I, Kisinza W, Mosha F, Rowland M: High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J 2013, 12(1):149. BioMed Central Full Text
  • [53]Yewhalaw D, Bortel WV, Denis L, Coosemans M, Duchateau L, Speybroeck N: First evidence of high knockdown resistance frequency in Anopheles arabiensis (Diptera: Culicidae) from Ethiopia. Am J Trop Med Hyg 2010, 83(1):122-125.
  • [54]Mouatcho JC, Munhenga G, Hargreaves K, Brooke BD, Coetzee M, Koekemoer LL: Pyrethroid resistance in a major African malaria vector Anopheles arabiensis from Mamfene, northern KwaZulu-Natal, South Africa. S Afr J Sci 2009, 105:127-131.
  • [55]Syafruddin D, Hidayati A, Asih P, Hawley W, Sukowati S, Lobo N: Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia. Malar J 2010, 9(1):315. BioMed Central Full Text
  • [56]Corbel V, N’Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M: Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 2007, 101(3):207-216.
  • [57]Edi CV, Koudou BG, Jones CM, Weetman D, Ranson H: Multiple-insecticide resistance in Anopheles gambiae mosquitoes: Southern Cote d’Ivoire. Emerg Infect Dis 2012, 18(9):1508-1511.
  • [58]Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, Jones CM, Diabate A, Ranson H, Wondji CS: Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene 2013, 519(1):98-106.
  • [59]Djouaka R, Irving H, Tukur Z, Wondji CS: Exploring mechanisms of multiple insecticide resistance in a population of the malaria vector Anopheles funestus in Benin. PLoS ONE 2011, 6(11):e27760.
  • [60]Perera M, Hemingway J, Karunaratne SHPP: Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malar J 2008, 7(1):168. BioMed Central Full Text
  • [61]Moiroux N, Gomez MB, Pennetier CD, Elanga E, Djènontin A, Chandre F, Djègbé I, Guis H, Corbel V: Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 2012, 206(10):1622-1629.
  • [62]Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR: Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 2013., 12(56)
  • [63]Govella NJ, Ferguson H: Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol 2012, 3:199.
  • [64]Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF: Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS ONE 2010, 5(7):e11573.
  • [65]Imbahale S, Githeko A, Mukabana W, Takken W: Integrated mosquito larval source management reduces larval numbers in two highland villages in western Kenya. BMC Public Health 2012, 12(1):362. BioMed Central Full Text
  • [66]Gunawardena DM, Wickremasinghe AR, Muthuwatta L, Weerasingha S, Rajakaruna J, Senanayaka T, Kotta PK, Attanayake N, Carter R, Mendis KN: Malaria risk factors in an endemic region of Sri Lanka, and the impact and cost implications of risk factor-based interventions. Am J Trop Med Hyg 1998, 58(5):533-542.
  • [67]Kamareddine L: The biological control of the malaria vector. Toxins 2012, 4(9):748-767.
  • [68]Grewal PS: Factors in the success and failure of microbial control in turfgrass. Integr Pest Manag Rev 1999, 4(4):287-294.
  文献评价指标  
  下载次数:7次 浏览次数:2次