期刊论文详细信息
Retrovirology
Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus
Iva Pichová1  Romana Hadravová1  Martin Lepšík1  Jiří Brynda1  Ondřej Vaněk2  Jiří Dostál1  Aleš Zábranský1  Michal Doležal1 
[1] Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, Prague, 166 10, Czech Republic;Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague, 128 40, Czech Republic
关键词: X-ray crystallography;    Analytical ultracentrifugation;    Retrovirus;    Myristoyl switch;    Myristoylation;    Mouse mammary tumor virus;    Molecular dynamics;    MMTV;    Matrix protein;    Dimerization;   
Others  :  1235375
DOI  :  10.1186/s12977-015-0235-8
 received in 2015-07-23, accepted in 2015-12-22,  发布年份 2016
PDF
【 摘 要 】

Background

Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated.

Results

Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release.

Conclusions

Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization.

【 授权许可】

   
2016 Doležal et al.

【 预 览 】
附件列表
Files Size Format View
20160118081117439.pdf 2214KB PDF download
Fig.10. 58KB Image download
Fig.9. 109KB Image download
Fig.8. 16KB Image download
Fig.7. 25KB Image download
Fig.6. 23KB Image download
Fig.5. 55KB Image download
Fig.4. 25KB Image download
Fig.3. 76KB Image download
Fig.2. 92KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

【 参考文献 】
  • [1]Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses. 2010; 2:2000-2012.
  • [2]Swanstrom R, Wills JW: Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus. HE, editors. Retroviruses. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1997. p. 263–334.
  • [3]Maurer-Stroh S, Eisenhaber F. Myristoylation of viral and bacterial proteins. Trends Microbiol. 2004; 12:178-185.
  • [4]Dick RA, Vogt VM. Membrane interaction of retroviral Gag proteins. Front Microbiol. 2014; 5:1-11.
  • [5]Zhou W, Parent LJ, Wills JW, Resh MD. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol. 1994; 68:2556-2569.
  • [6]Bryant M, Ratner L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA. 1990; 87:523-527.
  • [7]Göttlinger HG, Sodroski JG, Haseltine WA. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1989; 86:5781-5785.
  • [8]Freed EO, Orenstein JM, Buckler-White AJ, Martin MA. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol. 1994; 68:5311-5320.
  • [9]Ono A, Freed EO. Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol. 1999; 73:4136-4144.
  • [10]Rhee SS, Hunter E. Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids. J Virol. 1987; 61:1045-1053.
  • [11]Zábranský A, Hadravová R, Stokrová J, Sakalian M, Pichová I. Premature processing of mouse mammary tumor virus Gag polyprotein impairs intracellular capsid assembly. Virology. 2009; 384:33-37.
  • [12]Hamard-Peron E, Muriaux D. Retroviral matrix and lipids, the intimate interaction. Retrovirology. 2011; 8:15. BioMed Central Full Text
  • [13]Chukkapalli V, Ono A. Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol. 2011; 410:512-524.
  • [14]Vlach J, Lipov J, Rumlová M, Veverka V, Lang J, Srb P, Knejzlík Z, Pichová I, Hunter E, Hrabal R, Ruml T. D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc Natl Acad Sci USA. 2008; 105:10565-10570.
  • [15]Zhang G, Sharon D, Jovel J, Liu L, Wine E, Tahbaz N, Indik S, Mason A. Pericentriolar targeting of the mouse mammary tumor virus GAG protein. PLoS One. 2015; 10:e0131515.
  • [16]Rhee SS, Hunter E: Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport and membrane association of a capsid. EMBO J 1991;10:535–546.
  • [17]Stansell E, Tytler E, Walter MR, Hunter E: An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the Gag matrix domain core. J Virol 2004;78:5023–5031.
  • [18]Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E: Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J Virol 2007;81:8977–88.
  • [19]Murakami T, Freed EO. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol. 2000; 74:3548-3554.
  • [20]Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol. 1994; 244:198-223.
  • [21]Rao Z, Belyaev AS, Fry E, Roy P, Jones IM, Stuart DI. Crystal structure of SIV matrix antigen and implications for virus assembly. Nature. 1995; 378:743-747.
  • [22]Matthews S, Mikhailov M, Burny A, Roy P. The solution structure of the bovine leukaemia virus matrix protein and similarity with lentiviral matrix proteins. EMBO J. 1996; 15:3267-3274.
  • [23]Christensen AM, Massiah MA, Turner BG, Sundquist WI, Summers MF. Three-dimensional structure of the HTLV-II matrix protein and comparative analysis of matrix proteins from the different classes of pathogenic human retroviruses. J Mol Biol. 1996; 264:1117-1131.
  • [24]Conte MR, Klikova M, Hunter E, Ruml T, Matthews S. The three-dimensional solution structure of the matrix protein from the type D retrovirus, the Mason-Pfizer monkey virus, and implications for the morphology of retroviral assembly. EMBO J. 1997; 16:5819-5826.
  • [25]McDonnell JM, Fushman D, Cahill SM, Zhou W, Wolven A, Wilson CB, Nelle TD, Resh MD, Wills J, Cowburn D. Solution structure and dynamics of the bioactive retroviral M domain from Rous sarcoma virus. J Mol Biol. 1998; 279:921-928.
  • [26]Hatanaka H, Iourin O, Rao Z, Fry E, Kingsman A, Stuart DI. Structure of equine infectious anemia virus matrix protein. J Virol. 2002; 76:1876-1883.
  • [27]Riffel N, Harlos K, Iourin O, Rao Z, Kingsman A, Stuart D, Fry E. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure. 2002; 10:1627-1636.
  • [28]Saad JS, Ablan SD, Ghanam RH, Kim A, Andrews K, Nagashima K, Soheilian F, Freed EO, Summers MF. Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. J Mol Biol. 2008; 382:434-447.
  • [29]Serrière J, Robert X, Perez M, Gouet P, Guillon C. Biophysical characterization and crystal structure of the Feline Immunodeficiency Virus p15 matrix protein. Retrovirology. 2013; 10:64. BioMed Central Full Text
  • [30]Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA. 2004; 101:517-522.
  • [31]Brown L, Cox C, Baptiste J, Summers H, Button R, Bahlow K, Spurrier V, Kyser J, Luttge B, Kuo L, Freed E, Summers M. NMR Structure of the myristylated feline immunodeficiency virus matrix protein. Viruses. 2015; 7:2210-2229.
  • [32]Prchal J, Srb P, Hunter E, Ruml T, Hrabal R. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J Mol Biol. 2012; 423:427-438.
  • [33]Hill CP, Worthylake DK, Bancroft DP, Christensen AM, Sundquist WI. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA. 1996; 93:3099-3104.
  • [34]Vlach J, Srb P, Prchal J, Grocký M, Lang J, Ruml T, Hrabal R. Nonmyristoylated matrix protein from the Mason-Pfizer monkey virus forms oligomers. J Mol Biol. 2009; 390:967-980.
  • [35]Fledderman EL, Fujii K, Ghanam RH, Waki K, Prevelige PE, Freed EO, Saad JS. Myristate exposure in the human immunodeficiency virus type 1 matrix protein is modulated by pH. Biochemistry. 2010; 49:9551-9562.
  • [36]Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: fat matters in cellular life and death. Biochimie. 2011; 93:18-31.
  • [37]Doležal M, Zábranský A, Hrabal R, Ruml T, Pichová I, Rumlová M. One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins. Protein Expr Purif. 2013; 92:94-99.
  • [38]Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007; 372:774-797.
  • [39]Zábranský A, Hoboth P, Hadravová R, Stokrová J, Sakalian M, Pichová I. The noncanonical Gag domains p8 and n are critical for assembly and release of mouse mammary tumor virus. J Virol. 2010; 84:11555-11559.
  • [40]Zábranský A, Sakalian M, Pichová I. Localization of self-interacting domains within betaretrovirus Gag polyproteins. Virology. 2005; 332:659-666.
  • [41]Sfakianos JN, Hunter E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic. 2003; 4:671-680.
  • [42]Clark J, Grznarova P, Stansell E, Diehl W, Lipov J, Spearman P, Ruml T, Hunter E. A Mason-Pfizer Monkey virus Gag-GFP fusion vector allows visualization of capsid transport in live cells and demonstrates a role for microtubules. PLoS One. 2013; 8:e83863.
  • [43]Pereira LE, Clark J, Grznarova P, Wen X, LaCasse R, Ruml T, Spearman P, Hunter E. Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules. Virology. 2014; 449:109-119.
  • [44]Sakalian M, Hunter E. Separate assembly and transport domains within the Gag precursor of Mason-Pfizer monkey virus. J Virol. 1999; 73:8073-8082.
  • [45]Knejzlík Z, Smékalová Z, Ruml T, Sakalian M. Multimerization of the p12 domain is necessary for Mason-Pfizer monkey virus Gag assembly in vitro. Virology. 2007; 365:260-270.
  • [46]Sakalian M, Dittmer SS, Gandy AD, Rapp ND, Zábranský A, Hunter E. The Mason-Pfizer monkey virus internal scaffold domain enables in vitro assembly of human immunodeficiency virus type 1 Gag. J Virol. 2002; 76:10811-10820.
  • [47]Sommerfelt MA, Rhee SS, Hunter E. Importance of p12 protein in Mason-Pfizer monkey virus assembly and infectivity. J Virol. 1992; 66:7005-7011.
  • [48]Srb P, Vlach J, Prchal J, Grocký M, Ruml T, Lang J, Hrabal R. Oligomerization of a retroviral matrix protein is facilitated by backbone flexibility on nanosecond time scale. J Phys Chem B. 2011; 115:2634-2644.
  • [49]Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J. 2000; 78:1606-1619.
  • [50]Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G, Weiss MS. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat. 2012; 19:442-449.
  • [51]Kabsch W. XDS. Acta Crystallogr Sect D Biol Crystallogr 2010; 66:125–132.
  • [52]Sheldrick GM. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):479-485.
  • [53]Pape T, Schneider TR. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr. 2004; 37:843-844.
  • [54]Schneider TR, Sheldrick GM. Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr. 2002; 58:1772-1779.
  • [55]Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr. 2006; 62:1002-1011.
  • [56]Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60:2126-2132.
  • [57]Pannu NS, Murshudov GN, Dodson EJ, Read RJ. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr D Biol Crystallogr. 1998; 54:1285-1294.
  • [58]Žáková L, Kletvíková E, Veverka V, Lepšík M, Watson CJ, Turkenburg JP, Jiráček J, Brzozowski AM. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem. 2013; 288:10230-10240.
  • [59]Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, T.E. Cheatham I, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, et al.: AMBER 14. 2014.
  • [60]Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C: Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Genet 2006;712–725.
  • [61]Bayly CCI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys… 1993; 97:10269–80.
  • [62]Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general Amber force field. J Comput Chem. 2004; 25:1157-1174.
  文献评价指标  
  下载次数:47次 浏览次数:18次