期刊论文详细信息
Molecular Neurodegeneration
Dantrolene is neuroprotective in Huntington's disease transgenic mouse model
Ilya Bezprozvanny3  Charlene Supnet3  Emily Herndon1  Svetlana Lvovskaya3  Jun Wu2  Xi Chen2 
[1] Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;Department of Medical Physics and Bioengineering, St Petersburg State Polytechnical University, St. Petersburg, Russia
关键词: neuroprotection;    aggregation;    ryanodine receptor;    dantrolene;    cell death;    calcium imaging;    calcium signaling;    Huntington's disease;   
Others  :  864008
DOI  :  10.1186/1750-1326-6-81
 received in 2011-08-05, accepted in 2011-11-25,  发布年份 2011
PDF
【 摘 要 】

Background

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model.

Results

The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates.

Conclusions

Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as dantrolene should be considered as potential therapeutics for the treatment of HD and other polyQ-expansion disorders.

【 授权许可】

   
2011 Chen et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725075150118.pdf 854KB PDF download
72KB Image download
104KB Image download
44KB Image download
54KB Image download
46KB Image download
33KB Image download
【 图 表 】

【 参考文献 】
  • [1]Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr: Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985, 44(6):559-577.
  • [2]Bauer PO, Nukina N: The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009, 110(6):1737-1765.
  • [3]Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I: Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1. Neuron 2003, 39(2):227-239.
  • [4]Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I: Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA 2005, 102(7):2602-2607.
  • [5]Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I: Neuroprotective effects of inositol 1, 4, 5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci 2009, 29(5):1257-1266.
  • [6]Wu J, Shih HP, Vigont V, Hrdlicka L, Diggins L, Singh C, Mahoney M, Chesworth R, Shapiro G, Zimina O, et al.: Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment. Chem Biol 2011, 18(6):777-793.
  • [7]Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I: Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiol Dis 2008, 31(1):80-88.
  • [8]Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA: Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 2002, 33(6):849-860.
  • [9]Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA: Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004, 25(3):469-479.
  • [10]Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR, Hayden MR, Raymond LA: Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 2006, 21(2):392-403.
  • [11]Milnerwood AJ, Raymond LA: Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci 2010, 33(11):513-523.
  • [12]Okamoto SI, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, et al.: Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009.
  • [13]Bezprozvanny I, Hayden MR: Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun 2004, 322(4):1310-1317.
  • [14]Bezprozvanny I: Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009, 15(3):89-100.
  • [15]Miller BR, Bezprozvanny I: Corticostriatal circuit dysfunction in Huntington's disease: intersection of glutamate, dopamine, and calcium. Future Neurology 2010, 5:735-756.
  • [16]Bezprozvanny I: Role of Inositol 1, 4, 5-Trishosphate Receptors in Pathogenesis of Huntington's Disease and Spinocerebellar Ataxias. Neurochem Res 2011.
  • [17]Berridge MJ: The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 2002, 32(5-6):235-249.
  • [18]Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 2009, 29(29):9148-9162.
  • [19]Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 2008, 28(48):12713-12724.
  • [20]Wu J, Tang T, Bezprozvanny I: Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington's disease. Neurosci Lett 2006, 407(3):219-223.
  • [21]Wu J, Li Q, Bezprozvanny I: Evaluation of Dimebon in cellular model of Huntington's disease. Mol Neurodegener 2008, 3(1):15. BioMed Central Full Text
  • [22]Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I: Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res 2009, 87(8):1904-1912.
  • [23]Frandsen A, Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 1991, 56(3):1075-1078.
  • [24]Berg M, Bruhn T, Frandsen A, Schousboe A, Diemer NH: Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J Neurosci Res 1995, 40(5):641-646.
  • [25]Mody I, MacDonald JF: NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci 1995, 16(10):356-359.
  • [26]Wei H, Perry DC: Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem 1996, 67(6):2390-2398.
  • [27]Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP: Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 1999, 5(1):101-106.
  • [28]Niebauer M, Gruenthal M: Neuroprotective effects of early vs. late administration of dantrolene in experimental status epilepticus. Neuropharmacology 1999, 38(9):1343-1348.
  • [29]Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, et al.: Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 2001, 276(15):11539-11544.
  • [30]Popescu BO, Oprica M, Sajin M, Stanciu CL, Bajenaru O, Predescu A, Vidulescu C, Popescu LM: Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. J Cell Mol Med 2002, 6(4):555-569.
  • [31]Makarewicz D, Zieminska E, Lazarewicz JW: Dantrolene inhibits NMDA-induced 45Ca uptake in cultured cerebellar granule neurons. Neurochem Int 2003, 43(4-5):273-278.
  • [32]Tang TS, Chen X, Liu J, Bezprozvanny I: Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci 2007, 27(30):7899-7910.
  • [33]Wang H, Chen X, Li Y, Tang TS, Bezprozvanny I: Tetrabenazine is neuroprotective in Huntington's disease mice. Mol Neurodegener 2010, 5:18. BioMed Central Full Text
  • [34]Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, Lotz GP, Yang G, Muchowski PJ, Kodadek T, et al.: Expanded Polyglutamine-Binding Peptoid as a Novel Therapeutic Agent for Treatment of Huntington's Disease. Chem Biol 2011, 18(9):1113-1125.
  • [35]Zhang H, Das S, Li QZ, Dragatsis I, Repa J, Zeitlin S, Hajnoczky G, Bezprozvanny I: Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. BMC Neurosci 2008, 9(1):38. BioMed Central Full Text
  • [36]Zhao X, Weisleder N, Han X, Pan Z, Parness J, Brotto M, Ma J: Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 2006, 281(44):33477-33486.
  • [37]Muehlschlegel S, Sims JR: Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit. Neurocrit Care 2009, 10(1):103-115.
  • [38]Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H: Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology 2002, 96(3):705-710.
  • [39]Tasker RC, Sahota SK, Cotter FE, Williams SR: Early postischemic dantrolene-induced amelioration of poly(ADP-ribose) polymerase-related bioenergetic failure in neonatal rat brain slices. J Cereb Blood Flow Metab 1998, 18(12):1346-1356.
  • [40]Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM: Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem 2000, 75(1):81-90.
  • [41]Kim BC, Kim HT, Mamura M, Ambudkar IS, Choi KS, Kim SJ: Tumor necrosis factor induces apoptosis in hepatoma cells by increasing Ca(2+) release from the endoplasmic reticulum and suppressing Bcl-2 expression. J Biol Chem 2002, 277(35):31381-31389.
  • [42]Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP: Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997, 17(11):4212-4222.
  • [43]Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T, Wanaka A, Takeda M, Tohyama M: The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J Biol Chem 1999, 274(12):7975-7981.
  • [44]Rothstein JD, Kuncl RW: Neuroprotective strategies in a model of chronic glutamate-mediated motor neuron toxicity. J Neurochem 1995, 65(2):643-651.
  • [45]Inan S, Wei H: The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth Analg 2010, 111(6):1400-1410.
  • [46]Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I: Role of presenilins in neuronal calcium homeostasis. J Neurosci 2010, 30(25):8566-8580.
  • [47]Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F: Dantrolene--a review of its pharmacology, therapeutic use and new developments. Anaesthesia 2004, 59(4):364-373.
  • [48]Bezprozvanny I, Klockgether T: Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs of the Future 2010, 34(12):991-999.
  • [49]Kasumu A, Bezprozvanny I: Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias. Cerebellum 2010.
  • [50]Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, et al.: Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 2003, 12(13):1555-1567.
  文献评价指标  
  下载次数:5次 浏览次数:14次