Particle and Fibre Toxicology | |
Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus | |
Min Hu2  Jun-Long Zhao2  Rui Zhou2  Li He2  Fang-Yuan Yin2  Yi-Fan Wang2  Pasi K Korhonen1  James B Lok3  Robin B Gasser1  Fa-Cai Li2  | |
[1] Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville 3010, VIC, Australia;State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China;Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA19104, USA | |
关键词: Transgenesis; Development; aap-1; age-1; Haemonchus contortus; Parasitic nematode; | |
Others : 1149480 DOI : 10.1186/s13071-014-0498-2 |
|
received in 2014-09-05, accepted in 2014-10-21, 发布年份 2014 | |
【 摘 要 】
Background
Phosphoinositide 3-kinases (PI3Ks) are relatively conserved and important intracellular lipid kinases involved in signalling and other biological pathways. In the free-living nematode Caenorhabditis elegans, the heterodimeric form of PI3K consists of catalytic (AGE-1) and regulatory (AAP-1) subunits. These subunits are key components of the insulin-like signalling pathway and play roles in the regulation of the entry into and exit from dauer. Although, in parasitic nematodes, similar components are proposed to regulate the transition from free-living or arrested stages to parasitic larvae, nothing is known about PI3Ks in relation to the transition of third-stage larvae (L3s) to parasitism in Haemonchus contortus.
Methods
An integrated molecular approach was used to investigate age-1 and aap-1 of H. contortus (Hc-age-1 and Hc-aap-1) in C. elegans.
Results
The two genes Hc-age-1 and Hc-aap-1 were transcribed in all life stages, with the highest levels in the egg, infective L3 and adult female of H. contortus. The expression of these genes was localized to the intestine, contrasting the pattern of their orthologues in C. elegans (where they are expressed in both head neurons and the intestine). The yeast two-hybrid analysis demonstrated that the adaptor-binding domain of Hc-AGE-1 interacted strongly with the Hc-AAP-1; however, this complex did not rescue the function of its orthologue in age-1-deficient C. elegans.
Conclusions
This is the first time that the PI3K-encoding genes have been characterized from a strongylid parasitic nematode. The findings provide insights into the role of the PI3K heterodimer represented by Hc-age-1 and Hc-aap-1 in the developmental biology of H. contortus.
【 授权许可】
2014 Li et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405073431933.pdf | 1743KB | download | |
Figure 5. | 62KB | Image | download |
Figure 4. | 36KB | Image | download |
Figure 3. | 26KB | Image | download |
Figure 2. | 56KB | Image | download |
Figure 1. | 21KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Whitman M, Downes CP, Keeler M, Keller T, Cantley L: Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988, 332:644-646.
- [2]Downes CP, Carter AN: Phosphoinositide 3-kinase: a new effector in signal transduction? Cell Signal 1991, 3:501-513.
- [3]Vanhaesebroeck B, Waterfield MD: Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 1999, 253:239-254.
- [4]Hawkins PT, Anderson KE, Davidson K, Stephens LR: Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 2006, 34:647-662.
- [5]Friedman DB, Johnson TE: A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988, 118:75-86.
- [6]Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R: A C. elegans mutant that lives twice as long as wild type. Nature 1993, 366:461-464.
- [7]Oldham S, Hafen E: Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 2003, 13:79-85.
- [8]Brachmann SM, Ueki K, Engelman JA, Kahn RC, Cantley LC: Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 2005, 25:1596-1607.
- [9]Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B: Critical role for the p110 alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 2006, 441:366-370.
- [10]Stein RC, Waterfield MD: PI3-kinase inhibition: a target for drug development? Mol Med Today 2000, 6:347-357.
- [11]Engelman JA, Luo J, Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006, 7:606-619.
- [12]Morris JZ, Tissenbaum HA, Ruvkun G: A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996, 382:536-539.
- [13]Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G: Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 2002, 277:49591-49597.
- [14]Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD: Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 1997, 22:267-272.
- [15]Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G: daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997, 277:942-946.
- [16]Apfeld J, Kenyon C: Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 1998, 95:199-210.
- [17]Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL: Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998, 150:129-155.
- [18]Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997, 7:261-269.
- [19]Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G: A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 1999, 13:1438-1452.
- [20]Paradis S, Ruvkun G: Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998, 12:2488-2498.
- [21]Lin K, Dorman JB, Rodan A, Kenyon C: daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997, 278:1319-1322.
- [22]Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G: The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997, 389:994-999.
- [23]Ogg S, Ruvkun G: The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol cell 1998, 2:887-893.
- [24]Yen K, Narasimhan SD, Tissenbaum HA: DAF-16/Forkhead box O transcription factor: many paths to a single Fork(head) in the road. Antioxid Redox Signal 2011, 14:623-634.
- [25]Mukhopadhyay A, Oh SW, Tissenbaum HA: Worming pathways to and from DAF-16/FOXO. Exp Gerontol 2006, 41:928-934.
- [26]Blaxter M: Caenorhabditis elegans is a nematode. Science 1998, 282:2041-2046.
- [27]Hashmi S, Tawe W, Lustigman S: Caenorhabditis elegans and the study of gene function in parasites. Trends Parasitol 2001, 17:387-393.
- [28]Gilleard JS: The use of Caenorhabditis elegans in parasitic nematode research. Parasitology 2004, 128:S49-S70.
- [29]Britton C, Murray L: Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. Int J Parasitol 2006, 36:651-659.
- [30]Stoltzfus JD, Massey HC Jr, Nolan TJ, Griffith SD, Lok JB: Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS One 2012, 7:e38587.
- [31]Brand A, Hawdon JM: Phosphoinositide-3-OH-kinase inhibitor LY294002 prevents activation of Ancylostoma caninum and Ancylostoma ceylanicum third-stage infective larvae. Int J Parasitol 2004, 34:909-914.
- [32]Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA: The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol 2013, 14:R88. BioMed Central Full Text
- [33]Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, Hall RS, Mondal A, Howe AC, Pell J, Hofmann A, Boag PR, Zhu XQ, Gregory T, Loukas A, Williams BA, Antoshechkin I, Brown C, Sternberg PW, Gasser RB: The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol 2013, 14:R89. BioMed Central Full Text
- [34]Kalinna BH, Brindley PJ: Manipulating the manipulators: advances in parasitic helminth transgenesis and RNAi. Trends Parasitol 2007, 23:197-204.
- [35]Knox DP, Geldhof P, Visser A, Britton C: RNA interference in parasitic nematodes of animals: a reality check? Trends Parasitol 2007, 23:105-107.
- [36]Maule AG, McVeigh P, Dalzell JJ, Atkinson L, Mousley A, Marks NJ: An eye on RNAi in nematode parasites. Trends Parasitol 2011, 27:505-513.
- [37]Gao X, Frank D, Hawdon JM: Molecular cloning and DNA binding characterization of DAF-16 orthologs from Ancylostoma hookworms. Int J Parasitol 2009, 39:407-415.
- [38]Gelmedin V, Brodigan T, Gao X, Krause M, Wang Z, Hawdon JM: Transgenic C. elegans dauer larvae expressing hookworm phospho null DAF-16/FoxO exit dauer. PLoS One 2011, 6:e25996.
- [39]Hu M, Lok JB, Ranjit N, Massey HC Jr, Sternberg PW, Gasser RB: Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). Int J Parasitol 2010, 40:405-415.
- [40]Li F, Lok JB, Gasser RB, Korhonen PK, Sandeman MR, Shi D, Zhou R, Li X, Zhou Y, Zhao J, Hu M: Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. Int J Parasitol 2014, 44:485-496.
- [41]Massey HC Jr, Bhopale MK, Li X, Castelletto M, Lok JB: The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. Int J Parasitol 2006, 36:347-352.
- [42]Massey HC Jr, Nishi M, Chaudhary K, Pakpour N, Lok JB: Structure and developmental expression of Strongyloides stercoralis fktf-1, a proposed ortholog of daf-16 in Caenorhabditis elegans. Int J Parasitol 2003, 33:1537-1544.
- [43][http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html] webcite Stiernagle T: Maintenance of C. elegans. In The C. elegans Research Community. Edited by WormBook. ?: ?; ?. Available from: .
- [44]Nielsen H, Engelbrecht J, Brunak S, von Heijne G: A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 1997, 8:581-599.
- [45]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
- [46]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
- [47]Nelson MD, Fitch DH: Overlap extension PCR: an efficient method for transgene construction. Methods Mol Biol 2011, 772:459-470.
- [48]Konrad C, Kroner A, Spiliotis M, Zavala-Gongora R, Brehm K: Identification and molecular characterisation of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis. Int J Parasitol 2003, 33:301-312.
- [49]Khayath N, Vicogne J, Ahier A, BenYounes A, Konrad C, Trolet J, Viscogliosi E, Brehm K, Dissous C: Diversification of the insulin receptor family in the helminth parasite Schistosoma mansoni. FEBS J 2007, 274:659-676.
- [50]Mello CC, Kramer JM, Stinchcomb D, Ambros V: Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 1991, 10:3959-3970.
- [51]Holt KH, Olson L, Moye-Rowley WS, Pessin JE: Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 1994, 14:42-49.
- [52]Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A, Carvunis AR, Pulak R, Shingles J, Reece-Hoyes J, Hunt-Newbury R, Viveiros R, Mohler WA, Tasan M, Roth FR, Le Peuch C, Hope IA, Johnsen R, Moerman DG, Barabási AL, Baillie D, Vidal M: Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 2007, 25:663-668.
- [53]Fry MJ: Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1994, 1226:237-268.
- [54]Fry MJ: Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 2001, 3:304-312. BioMed Central Full Text
- [55]Rameh LE, Cantley LC: The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 1999, 274:8347-8350.
- [56]Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD: Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001, 17:615-675.
- [57]Massey HC Jr, Ranjit N, Stoltzfus JD, Lok JB: Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2. Int J Parasitol 2013, 43:515-520.
- [58]Weinkove D, Leevers SJ, MacDougall LK, Waterfield MD: p60 is an adaptor for the Drosophila phosphoinositide 3-kinase, Dp110. J Biol Chem 1997, 272:14606-14610.
- [59]Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B: Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Nat Acad Sci U S A 2007, 104:7809-7814.
- [60]Hawdon JM, Volk SW, Rose R, Pritchard DI, Behnke JM, Schad GA: Observations on the feeding behaviour of parasitic third-stage hookworm larvae. Parasitology 1993, 106:163-169.
- [61]Cantacessi C, Campbell BE, Young ND, Jex AR, Hall RS, Presidente PJ, Zawadzki JL, Zhong W, Aleman-Meza B, Loukas A, Sternberg PW, Gasser RB: Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. BMC genomics 2010, 11:266. BioMed Central Full Text
- [62]Hebert DN, Foellmer B, Helenius A: Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 1996, 15:2961-2968.
- [63]Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB: The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 1996, 15:1495-1506.
- [64]Carroll SB: Endless forms: the evolution of gene regulation and morphological diversity. Cell 2000, 101:577-580.
- [65]Crook M: The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol 2014, 44:1-8.
- [66]Hotez P, Hawdon J, Schad GA: Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. Parasitol Today 1993, 9:23-26.
- [67]Wang Z, Zhou XE, Motola DL, Gao X, Suino-Powell K, Conneely A, Ogata C, Sharma KK, Auchus RJ, Lok JB, Hawdon JM, Kliewer SA, Xu HE, Mangelsdorf DJ: Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Nati Acad Sci U S A 2009, 106:9138-9143.
- [68]Shao H, Li X, Nolan TJ, Massey HC Jr, Pearce EJ, Lok JB: Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines. PLoS Pathog 2012, 8:e1002871.