Molecular Neurodegeneration | |
S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease | |
Stuart A Lipton1  Nobuki Nakanishi2  Eliezer Masliah1  Traci Fang Newmeyer2  Shing Fai Chan2  Anthony Adame1  Michael Mante1  Edward Rockenstein1  Tomohiro Nakamura2  Carmen R Sunico2  | |
[1] Department of Neurosciences and Pathology, University of California at San Diego, 9500, Gilman Drive, La Jolla, CA 92039, USA;Sanford-Burnham Medical Research Institute, Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, 10901, North Torrey Pines Road, La Jolla, CA 92037, USA | |
关键词: Parkinson’s disease; Nitrosative stress; p53; Parkin; S-nitrosylation; Nitric oxide (NO); | |
Others : 862203 DOI : 10.1186/1750-1326-8-29 |
|
received in 2013-06-01, accepted in 2013-08-16, 发布年份 2013 | |
【 摘 要 】
Background
Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson’s disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD.
Results
We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53. Chromatin immunoprecipitation as well as gel-shift assays showed that parkin bound to the p53 promoter, and this binding was inhibited by S-nitrosylation of parkin. Additionally, nitrosative stress induced apoptosis in cells expressing parkin, and this death was, at least in part, dependent upon p53. In primary mesencephalic cultures, pesticide-induced apoptosis was prevented by inhibition of nitric oxide synthase (NOS). In a mouse model of pesticide-induced PD, both S-nitrosylated (SNO-)parkin and p53 protein levels were increased, while administration of a NOS inhibitor mitigated neuronal death in these mice. Moreover, the levels of SNO-parkin and p53 were simultaneously elevated in postmortem human PD brain compared to controls.
Conclusions
Taken together, our data indicate that S-nitrosylation of parkin, leading to p53-mediated neuronal cell death, contributes to the pathophysiology of sporadic PD.
【 授权许可】
2013 Sunico et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725012048722.pdf | 1660KB | download | |
74KB | Image | download | |
75KB | Image | download | |
141KB | Image | download | |
50KB | Image | download | |
76KB | Image | download | |
119KB | Image | download | |
126KB | Image | download | |
79KB | Image | download | |
54KB | Image | download | |
80KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Mayeux R, Marder K, Cote LJ, Denaro J, Hemenegildo N, Mejia H, Tang MX, Lantigua R, Wilder D, Gurland B, et al.: The frequency of idiopathic Parkinson’s disease by age, ethnic group, and sex in northern Manhattan, 1988–1993. Am J Epidemiol 1995, 142:820-827.
- [2]Giasson BI, Lee VM: Are ubiquitination pathways central to Parkinson’s disease? Cell 2003, 114:1-8.
- [3]Jenner P: Oxidative stress in Parkinson’s disease. Ann Neurol 2003, 3(53):S26-36. discussion S36-28
- [4]Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000, 3:1301-1306.
- [5]Langston JW: Parkinson’s disease: current and future challenges. Neurotoxicology 2002, 23:443-450.
- [6]Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
- [7]Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, et al.: Association between early-onset Parkinson’s disease and mutations in the parkin gene. The New England journal of medicine 2000, 342:1560-1567.
- [8]Oliveira SA, Scott WK, Martin ER, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, et al.: Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann Neurol 2003, 53:624-629.
- [9]Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000, 25:302-305.
- [10]Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM: Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000, 97:13354-13359.
- [11]Bence NF, Sampat RM, Kopito RR: Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001, 292:1552-1555.
- [12]Dawson TM, Dawson VL: Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003, 302:819-822.
- [13]Feany MB, Pallanck LJ: Parkin: a multipurpose neuroprotective agent? Neuron 2003, 38:13-16.
- [14]Jiang H, Ren Y, Zhao J, Feng J: Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 2004, 13:1745-1754.
- [15]Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000, 287:1265-1269.
- [16]von Coelln R, Dawson VL, Dawson TM: Parkin-associated Parkinson’s disease. Cell Tissue Res 2004, 318:175-184.
- [17]Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, Nakaso K, Culmsee C, Berninger B, Krappmann D, et al.: Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience 2007, 27:1868-1878.
- [18]Johnson BN, Berger AK, Cortese GP, Lavoie MJ: The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A 2012, 109:6283-6288.
- [19]Alves Da Costa C, Checler F: Apoptosis in Parkinson’s disease: is p53 the missing link between genetic and sporadic Parkinsonism? Cell Signal 2011, 23:963-968.
- [20]da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, Safe S, Abou-Sleiman PM, Wood NW, Takahashi H, et al.: Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat Cell Biol 2009, 11:1370-1375.
- [21]Gu Z, Nakamura T, Yao D, Shi ZQ, Lipton SA: Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson’s disease. Cell Death Differ 2005, 12:1202-1204.
- [22]Vance JM, Ali S, Bradley WG, Singer C, Di Monte DA: Gene-environment interactions in Parkinson’s disease and other forms of parkinsonism. Neurotoxicology 2010, 31:598-602.
- [23]Wang C, Ko HS, Thomas B, Tsang F, Chew KC, Tay SP, Ho MW, Lim TM, Soong TW, Pletnikova O, et al.: Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 2005, 14:3885-3897.
- [24]Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM: S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 2004, 304:1328-1331.
- [25]Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B, Masliah E, Lipton SA, Gu Z: Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 2011, 6:34. BioMed Central Full Text
- [26]Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, et al.: Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 2004, 101:10810-10814.
- [27]Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B: Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 2009, 169:919-926.
- [28]Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC: Environmental risk factors and Parkinson’s disease: a case–control study in Taiwan. Neurology 1997, 48:1583-1588.
- [29]Meco G, Bonifati V, Vanacore N, Fabrizio E: Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scandinavian journal of work, environment & health 1994, 20:301-305.
- [30]Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE: Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 2005, 20:360-371.
- [31]Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA: Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain research 2000, 873:225-234.
- [32]Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA: The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 2000, 20:9207-9214.
- [33]Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA: Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology 2002, 23:621-633.
- [34]Zeevalk GD, Bernard LP, Guilford FT: Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells. Neurochem Res 2010, 35:1575-1587.
- [35]Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E, Fujita M, Hashimoto M, Masliah E: Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener 2012, 7:49. BioMed Central Full Text
- [36]Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC: Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 2004, 7:726-735.
- [37]Marxreiter F, Regensburger M, Winkler J: Adult neurogenesis in Parkinson’s disease. Cellular and molecular life sciences: CMLS 2013, 70:459-473.
- [38]Duplan E, Sevalle J, Viotti J, Goiran T, Bauer C, Renbaum P, Levy-Lahad E, Gautier CA, Corti O, Leroudier N, et al.: Parkin differently regulates presenilin-1 and presenilin-2 functions by direct control of their promoter transcription. Journal of molecular cell biology 2013, 5:132-142.
- [39]Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ, Hu W, Feng Z: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 2011, 108:16259-16264.
- [40]Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C, Marie Y, Idbaih A, Delattre JY, Honnorat J, et al.: Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 2013.
- [41]Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S: Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 2011, 31:157-163.
- [42]Duncan AJ, Heales SJ: Nitric oxide and neurological disorders. Mol Aspects Med 2005, 26:67-96.
- [43]Li X, Ye X, Li X, Sun X, Liang Q, Tao L, Kang X, Chen J: Salidroside protects against MPP(+)-induced apoptosis in PC12 cells by inhibiting the NO pathway. Brain Res 2011, 1382:9-18.
- [44]Singh S, Dikshit M: Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Rev 2007, 54:233-250.
- [45]Zhang L, Dawson VL, Dawson TM: Role of nitric oxide in Parkinson’s disease. Pharmacol Therapeut 2006, 109:33-41.
- [46]Barthwal MK, Srivastava N, Shukla R, Nag D, Seth PK, Srimal RC, Dikshit M: Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson’s disease patients. Acta neurologica Scandinavica 1999, 100:300-304.
- [47]Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML, Poderoso JJ: Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson’s disease. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society 2000, 4:534-539.
- [48]Singh S, Das T, Ravindran A, Chaturvedi RK, Shukla Y, Agarwal AK, Dikshit M: Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease. Redox report : communications in free radical research 2005, 10:103-109.
- [49]Jenner P, Olanow CW: Understanding cell death in Parkinson’s disease. Ann Neurol 1998, 44:S72-84.
- [50]Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, Goldman SA, Enikolopov G: Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 2003, 100:9566-9571.
- [51]Zhu XJ, Hua Y, Jiang J, Zhou QG, Luo CX, Han X, Lu YM, Zhu DY: Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 2006, 141:827-836.
- [52]Brune B, von Knethen A, Sandau KB: Transcription factors p53 and HIF-1alpha as targets of nitric oxide. Cell Signal 2001, 13:525-533.
- [53]Calmels S, Hainaut P, Ohshima H: Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer research 1997, 57:3365-3369.
- [54]Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS: Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Bio 2005, 6:150-166.
- [55]Schonhoff CM, Daou MC, Jones SN, Schiffer CA, Ross AH: Nitric oxide-mediated inhibition of Hdm2-p53 binding. Biochemistry 2002, 41:13570-13574.
- [56]Williams JL, Ji P, Ouyang N, Kopelovich L, Rigas B: Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action. Exp Cell Res 2011, 317:1359-1367.
- [57]Blum D, Wu Y, Nissou MF, Arnaud S, Alim Louis B, Verna JM: p53 and Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain research 1997, 751:139-142.
- [58]Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM: A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. Journal of neurochemistry 2002, 83:186-192.
- [59]Nair VD: Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson’s disease. Apoptosis : an international journal on programmed cell death 2006, 11:955-966.
- [60]Morrison RS, Kinoshita Y: The role of p53 in neuronal cell death. Cell death and differentiation 2000, 7:868-879.
- [61]Duan W, Zhu X, Ladenheim B, Yu QS, Guo Z, Oyler J, Cutler RG, Cadet JL, Greig NH, Mattson MP: p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Annals of neurology 2002, 52:597-606.
- [62]Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L: Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 1994, 367:188-193.
- [63]Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia-Bonnefil P: Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. The Journal of neuroscience : the official journal of the Society for Neuroscience 2006, 26:1107-1116.
- [64]De la Monte SM, Sohn YK, Ganju N, Wands JR: P53- and CD95-associated apoptosis in neurodegenerative diseases. Laboratory investigation; a journal of technical methods and pathology 1998, 78:401-411.
- [65]Mogi M, Kondo T, Mizuno Y, Nagatsu T: p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neuroscience letters 2007, 414:94-97.
- [66]Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM: Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. The American journal of pathology 2007, 170:658-666.
- [67]Mucke L, Abraham CR, Ruppe MD, Rockenstein EM, Toggas SM, Mallory M, Alford M, Masliah E: Protection against HIV-1 gp120-induced brain damage by neuronal expression of human amyloid precursor protein. The Journal of experimental medicine 1995, 181:1551-1556.
- [68]Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH: Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature cell biology 2001, 3:193-197.
- [69]Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA: S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441:513-517.
- [70]Eckardt-Michel J, Lorek M, Baxmann D, Grunwald T, Keil GM, Zimmer G: The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. Journal of virology 2008, 82:3236-3249.
- [71]Louis M, Zanou N, Van Schoor M, Gailly P: TRPC1 regulates skeletal myoblast migration and differentiation. Journal of cell science 2008, 121:3951-3959.