期刊论文详细信息
Radiation Oncology
Robotic radiosurgery versus micro-multileaf collimator: a dosimetric comparison for large or critically located arteriovenous malformations
Leszek Miszczyk2  Aleksandra Grządziel1  Sławomir Blamek2 
[1] Department of Radiotherapy and Brachytherapy Planning, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, ul. Wybrzeże AK 15, 44-100, Gliwice, Poland;Department of Radiotherapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
关键词: Micro-multileaf collimator;    Linear accelerator;    CyberKnife;    Dose distribution;    Arteriovenous malformations;   
Others  :  1153124
DOI  :  10.1186/1748-717X-8-205
 received in 2013-04-11, accepted in 2013-08-20,  发布年份 2013
PDF
【 摘 要 】

Background

Stereotactic irradiation of large or critically located arteriovenous malformations (AVMs) is a special challenge for clinicians and radiation physicists. To date, no comprehensive comparison of two linac-based radiosurgery systems used for hypofractionated radiotherapy of large AVMs was published. The aim of the study was to compare dose distributions between CyberKnife (CK) system and linac with a micro-multileaf collimator (L-mMLC) in high-grade or critically located cerebral AVMs.

Methods

Two sets of plans made for 15 different patients with at least 95% target coverage were selected for comparisons. Conformity (CI), homogeneity (HI) and gradient score (GSI) indices, conformity index proposed by Lomax (CIL), conformation number (CN), quality of coverage (Q), volumes of brain receiving 12,10,8,6,4, and 2 Gy, minimum and maximum doses for critical structures in both treatment planning systems (TPS) were compared. Finally, the number of monitor units needed to deliver the prescribed dose was compared.

Results

The mean minimum doses in the target volume were 93.3% (CK) and 90.7% (L-mMLC),p=n.s, maximum: 119.7 and 110%, respectively (p=0.004). The mean CI was 1.46 and 1.86, HI: 1.2, and 1.11, CIL 0.7, and 0.6, CN: 0.68 and 0.58 for CK and mMLC, respectively (p<0.05). The values of GSI and Q were not significantly different. The volumes of the brain receiving low doses (4 Gy and 2 Gy) were significantly lower in the CK system. The number of monitor units necessary to deliver the prescribed dose was significantly greater in case of the CK system.

Conclusions

Better conformity can favor the CK system for treatment of large AVMs at the cost of higher maximum doses and worse homogeneity. L-mMLC is superior when shorter treatment time is required. Neither system can assure satisfying dose gradients outside large targets surrounded by numerous critical structures.

【 授权许可】

   
2013 Blamek et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407035815896.pdf 1937KB PDF download
Figure 2. 165KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Hernesniemi JA, Dashti R, Juvela S, Väärt K, Niemelä M, Laakso A: Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery 2008, 63:823-829.
  • [2]Laakso A, Dashti R, Seppänen J, Juvela S, Väärt K, Niemelä M, Sankila R, Hernesniemi JA: Long-term excess mortality in 623 patients with brain arteriovenous malformations. Neurosurgery 2008, 63:244-253.
  • [3]Fogh S, Ma L, Gupta N, Sahgal A, Nakamura JL, Barani I, Sneed PK, McDermott M, Larson DA: High-precision volume-staged Gamma Knife surgery and equivalent hypofractionation dose schedules for treating large arteriovenous malformations. J Neurosurg 2012, 117(Suppl):115-119.
  • [4]Blamek S, Larysz D, Miszczyk L, Idasiak A, Rudnik A, Tarnawski R: Hypofractionated stereotactic radiotherapy for large or involving critical organs cerebral arteriovenous malformations. Radiol Oncol 2013, 47:50-56.
  • [5]Steiner L, Leksell L, Greitz T, Forster DM, Backlund EO: Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case. Acta Chir Scand 1972, 138:459-464.
  • [6]Kihlstrom L, Guo WY, Karlsson B, Lindquist C, Lindquist M: Magnetic resonance imaging of obliterated arteriovenous malformations up to 23 years after radiosurgery. J Neurosurg 1997, 86:589-593.
  • [7]Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P: Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 1994, 34:14-20.
  • [8]Steinberg GK, Fabrikant JI, Marks MP, Levy RP, Frankel KA, Phillips MH, Shuer LM, Silverberg GD: Stereotactic heavy-charged particle Bragg-peak radiation for intracranial arteriovenous malformations. N Engl J Med 1990, 323:96-101.
  • [9]Colombo F, Cavedon C, Casentini L, Francescon P, Causin F, Pinna V: Early results of CyberKnife radiosurgery for arteriovenous malformations. J Neurosurg 2009, 111:807-819.
  • [10]Wowra B, Muacevic A, Tonn JC, Schoenberg SO, Reiser M, Herrmann KA: Obliteration dynamics in cerebral arteriovenous malformations after cyberknife radiosurgery: quantification with sequential nidus volumetry and 3-tesla 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery 2009, 64(Suppl 2):A102-A109.
  • [11]Gevaert T, Levivier M, Lacornerie T, Verellen D, Engels B, Reynaert N, Tournel K, Duchateau M, Reynders T, Depuydt T, Collen C, Lartigau E, De Ridder M: Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas. Radiother Oncol 2013, 106:192-197.
  • [12]Pollock BE, Flickinger JC: Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery 2008, 63:239-243.
  • [13]IRIS™ variable aperture collimator for the Cyberknife® robotic radiosurgery system: design, beam properties, and clinical benefits.7-9. [Accuray Incorporated 2008] http://www.cyberknife.com.tr/images/yayin/Iris_Whitepaper.pdf webcite
  • [14]Wiggenraad RG, Petoukhova AL, Versluis L, van Santvoort JP: Stereotactic radiotherapy of intracranial tumors: a comparison of intensity-modulated radiotherapy and dynamic conformal arc. Int J Radiat Oncol Biol Phys 2009, 74:1018-1026.
  • [15]Sharma SD, Jalali R, Phurailatpam RD, Gupta T: Does intensity-modulated stereotactic radiotherapy achieve superior target conformity than conventional stereotactic radiotherapy in different intracranial tumours? Clin Oncol (R Coll Radiol) 2009, 21:408-416.
  • [16]Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, Martin L: Radiation Therapy Oncology Group: Radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993, 27:1231-1239.
  • [17]Lomax NJ, Scheib SG: Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 2003, 55:1409-1419.
  • [18]van't Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W: A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 1997, 37:731-736.
  • [19]Wagner TH, Bova FJ, Friedman WA, Buatti JM, Bouchet LG, Meeks SL: A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys 2003, 57:1141-1149.
  • [20]Ohtakara K, Hayashi S, Tanaka H, Hoshi H: Dosimetric comparison of 2.5 mm vs. 3.0 mm leaf width micro-multileaf collimator-based treatment systems for intracranial stereotactic radiosurgery using dynamic conformal arcs: implications for treatment planning. Jpn J Radiol 2011, 29:630-638.
  • [21]Dutta D, Balaji Subramanian S, Murli V, Sudahar H, Gopalakrishna Kurup PG, Potharaju M: Dosimetry comparison of Linac-based (BrainLAB) and robotic radiosurgery (CyberKnife) stereotactic system plans for acoustic schwannoma. J Neurooncol 2012, 106:637-642.
  • [22]Yu C, Jozsef G, Apuzzo ML, Petrovich Z: Dosimetric comparison of CyberKnife with other radiosurgical modalities for an ellipsoidal target. Neurosurgery 2003, 53:1155-1162.
  • [23]Blamek S, Boba M, Larysz D, Rudnik A, Ficek K, Eksner B, Miszczyk L, Tarnawski R: The incidence of imaging abnormalities after stereotactic radiosurgery for cerebral arteriovenous and cavernous malformations. Acta Neurochir Suppl 2010, 106:187-190.
  • [24]Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R, Pollock B: Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Int J Radiat Oncol Biol Phys 2000, 46:1143-1148.
  • [25]Ding C, Chang CH, Haslam J, Timmerman R, Solberg T: A dosimetric comparison of stereotactic body radiation therapy techniques for lung cancer: robotic versus conventional linac-based systems. J Appl Clin Med Phys 2010, 11:3223.
  • [26]Atalar B, Aydin G, Gungor G, Caglar H, Yapici B, Ozyar E: Dosimetric comparison of robotic and conventional linac-based stereotactic lung irradiation in early-stage lung cancer. Technol Cancer Res Treat 2012, 11:249-255.
  文献评价指标  
  下载次数:18次 浏览次数:13次