| Retrovirology | |
| FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection | |
| Ellen E Sparger3  Paul A Luciw1  Peter Moore2  Samantha McDonnel2  Diego Castillo2  Chad Hillman2  Natasha Vapniarsky2  Brian Murphy2  | |
| [1] Department of Pathology and Laboratory Medicine, Center for Comparative Medicine, University of California, Davis, County Road 98 and Hutchison Drive, Davis, CA 95616, USA;Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA;Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA, USA | |
| 关键词: feline; cat; monocyte; T cell; CD4+CD25-; CD4+CD25+; latency; FIV; Lentivirus; | |
| Others : 1209344 DOI : 10.1186/1742-4690-9-12 |
|
| received in 2011-10-18, accepted in 2012-02-07, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Feline immunodeficiency virus (FIV) is a lentivirus of cats that establishes a lifelong persistent infection with immunologic impairment.
Results
In an approximately 2 year-long experimental infection study, cats infected with a biological isolate of FIV clade C demonstrated undetectable plasma viral loads from 10 months post-infection onward. Viral DNA was detected in CD4+CD25+ and CD4+CD25- T cells isolated from infected cats whereas viral RNA was not detected at multiple time points during the early chronic phase of infection. Viral transcription could be reactivated in latently infected CD4+ T cells ex vivo as demonstrated by detectable FIV gag RNA and 2-long terminal repeat (LTR) circle junctions. Viral LTR and gag sequences amplified from peripheral blood mononuclear cells during early and chronic stages of infection demonstrated minimal to no viral sequence variation.
Conclusions
Collectively, these findings are consistent with FIV latency in peripheral blood CD4+ T cells isolated from chronically infected cats. The ability to isolate latently FIV-infected CD4+ T lymphocytes from FIV-infected cats provides a platform for the study of in vivo mechanisms of lentiviral latency.
【 授权许可】
2012 Murphy et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150602095802355.pdf | 693KB | ||
| Figure 8. | 33KB | Image | |
| Figure 7. | 22KB | Image | |
| Figure 6. | 66KB | Image | |
| Figure 5. | 41KB | Image | |
| Figure 4. | 57KB | Image | |
| Figure 3. | 37KB | Image | |
| Figure 2. | 82KB | Image | |
| Figure 1. | 38KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Elder JH, Lin YC, Fink E, Grant CK: Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 2010, 8:73-80.
- [2]Burkhard MJ, Dean GA: Transmission and immunopathogenesis of FIV in cats as a model for HIV. Curr HIV Res 2003, 1:15-29.
- [3]Sparger EE: FIV as a Model for HIV. In Animal Models of HIV Disease and Control. New York: Kluwer Academic/Plenum publishers; 2005:149-199.
- [4]Savarino A, Pistello M, D'Ostilio D, Zabogli E, Taglia F, Mancini F, Ferro S, Matteucci D, De Luca L, Barreca ML, et al.: Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Retrovirology 2007, 4:79. BioMed Central Full Text
- [5]Joshi A, Vahlenkamp TW, Garg H, Tompkins WA, Tompkins MB: Preferential replication of FIV in activated CD4(+)CD25(+)T cells independent of cellular proliferation. Virology 2004, 321:307-322.
- [6]Bendinelli M, Pistello M, Lombardi S, Poli A, Garzelli C, Matteucci D, Ceccherini-Nelli L, Malvaldi G, Tozzini F: Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clin Microbiol Rev 1995, 8:87-112.
- [7]Barlough JE, Ackley CD, George JW, Levy N, Acevedo R, Moore PF, Rideout BA, Cooper MD, Pedersen NC: Acquired immune dysfunction in cats with experimentally induced feline immunodeficiency virus infection: comparison of short-term and long-term infections. J Acquir Immune Defic Syndr 1991, 4:219-227.
- [8]Yamamoto JK, Sparger E, Ho EW, Andersen PR, O'Connor TP, Mandell CP, Lowenstine L, Munn R, Pedersen NC: Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am J Vet Res 1988, 49:1246-1258.
- [9]Ishida T, Tomoda I: Clinical staging of feline immunodeficiency virus infection. Nippon Juigaku Zasshi 1990, 52:645-648.
- [10]Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ: The challenge of finding a cure for HIV infection. Science 2009, 323:1304-1307.
- [11]Yang HC, Xing S, Shan L, O'Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, et al.: Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 2009, 119:3473-3486.
- [12]Joshi A, Garg H, Tompkins MB, Tompkins WA: Different thresholds of T cell activation regulate FIV infection of CD4+CD25+ and CD4+CD25- cells. Virology 2005, 335:212-221.
- [13]Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997, 94:13193-13197.
- [14]Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, et al.: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278:1295-1300.
- [15]Frey SC, Hoover EA, Mullins JI: Feline immunodeficiency virus cell entry. J Virol 2001, 75:5433-5440.
- [16]Krishnan V, Zeichner SL: Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004, 78:9458-9473.
- [17]Colin L, Van Lint C: Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009, 6:111. BioMed Central Full Text
- [18]Chun TW, Fauci AS: Latent reservoirs of HIV: obstacles to the eradication of virus. Proc Natl Acad Sci USA 1999, 96:10958-10961.
- [19]Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy. J Virol 2009, 83:8470-8481.
- [20]Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS: Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci USA 1998, 95:8869-8873.
- [21]Coiras M, Lopez-Huertas MR, Alcami J: HIV-1 latency and eradication of long-term viral reservoirs. Discov Med 9:185-191.
- [22]Coiras M, Lopez-Huertas MR, Perez-Olmeda M, Alcami J: Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 2009, 7:798-812.
- [23]Ching N, Nielsen-Saines KA, Deville JG, Wei LS, Garratty E, Bryson YJ: Autologous neutralizing antibody to human immunodeficiency virus-1 and replication-competent virus recovered from CD4+ T-cell reservoirs in pediatric HIV-1-infected patients on HAART. AIDS Res Hum Retroviruses 2010, 26:585-591.
- [24]Paci P, Martini F, Bernaschi M, D'Offizi G, Castiglione F: Timely HAART initiation may pave the way for a better viral control. BMC Infect Dis 11:56.
- [25]Ghosn J, Pellegrin I, Goujard C, Deveau C, Viard JP, Galimand J, Harzic M, Tamalet C, Meyer L, Rouzioux C, Chaix ML: HIV-1 resistant strains acquired at the time of primary infection massively fuel the cellular reservoir and persist for lengthy periods of time. AIDS 2006, 20:159-170.
- [26]Ching N, Nielsen-Saines KA, Deville JG, Wei LS, Garratty E, Bryson YJ: Autologous neutralizing antibody to human immunodeficiency virus-1 and replication-competent virus recovered from CD4+ T-cell reservoirs in pediatric HIV-1-infected patients on HAART. AIDS Res Hum Retroviruses 2010, 26:585-591.
- [27]Keedy KS, Margolis DM: Therapy for persistent HIV. Trends Pharmacol Sci 2010, 31:206-211.
- [28]Williams SA, Greene WC: Regulation of HIV-1 latency by T-cell activation. Cytokine 2007, 39:63-74.
- [29]Pace MJ, Agosto L, Graf EH, O'Doherty U: HIV reservoirs and latency models. Virology 2011, 411:344-354.
- [30]Tochikura TS, Naito Y, Kozutsumi Y, Hohdatsu T: Induction of feline immunodeficiency virus from a chronically infected feline T-lymphocyte cell line. Res Vet Sci 2011.
- [31]Rogers AB, Hoover EA: Fetal feline immunodeficiency virus is prevalent and occult. J Infect Dis 2002, 186:895-904.
- [32]Sharkey ME, Teo I, Greenough T, Sharova N, Luzuriaga K, Sullivan JL, Bucy RP, Kostrikis LG, Haase A, Veryard C, et al.: Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. Nat Med 2000, 6:76-81.
- [33]Teo I, Veryard C, Barnes H, An SF, Jones M, Lantos PL, Luthert P, Shaunak S: Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol 1997, 71:2928-2933.
- [34]Sparger EE, Beebe AM, Dua N, Himathongkam S, Elder JH, Torten M, Higgins J: Infection of cats with molecularly cloned and biological isolates of the feline immunodeficiency virus. Virology 1994, 205:546-553.
- [35]Yoder KE, Fishel R: PCR-based detection is unable to consistently distinguish HIV 1LTR circles. J Virol Methods 2006, 138:201-206.
- [36]Yuste E, Borderia AV, Domingo E, Lopez-Galindez C: Few mutations in the 5' leader region mediate fitness recovery of debilitated human immunodeficiency type 1 viruses. J Virol 2005, 79:5421-5427.
- [37]Kurosu T, Mukai T, Auwanit W, Ayuthaya PI, Saeng-Aroon S, Ikuta K: Variable sequences in the long terminal repeat and Its downstream region of some of HIV Type 1 CRF01_AE recently distributing among Thai carriers. AIDS Res Hum Retroviruses 2001, 17:863-866.
- [38]Tomonaga K, Inoshima Y, Ikeda Y, Mikami T: Temporal patterns of feline immunodeficiency virus transcripts in peripheral blood cells during the latent stage of infection. J Gen Virol 1995, 76(Pt 9):2193-2204.
- [39]Assogba BD, Leavell S, Porter K, Burkhard MJ: Mucosal administration of low-dose cell-associated feline immunodeficiency virus promotes viral latency. J Infect Dis 2007, 195:1184-1188.
- [40]Ikeda Y, Tomonaga K, Kawaguchi Y, Kohmoto M, Inoshima Y, Tohya Y, Miyazawa T, Kai C, Mikami T: Feline immunodeficiency virus can infect a human cell line (MOLT-4) but establishes a state of latency in the cells. J Gen Virol 1996, 77(Pt 8):1623-1630.
- [41]Marcello A: Latency: the hidden HIV-1 challenge. Retrovirology 2006, 3:7. BioMed Central Full Text
- [42]Graf EH, Mexas AM, Yu JJ, Shaheen F, Liszewski MK, Di Mascio M, Migueles SA, Connors M, O'Doherty U: Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog 2011, 7:e1001300.
- [43]Jurriaans S, de Ronde A, Dekker J, Goudsmit J, Cornelissen M: Analysis of human immunodeficiency virus type 1 LTR-LTR junctions in peripheral blood mononuclear cells of infected individuals. J Gen Virol 1992, 73(Pt 6):1537-1541.
- [44]Hong T, Drlica K, Pinter A, Murphy E: Circular DNA of human immunodeficiency virus: analysis of circle junction nucleotide sequences. J Virol 1991, 65:551-555.
- [45]Kulkosky J, Katz RA, Skalka AM: Terminal nucleotides of the preintegrative linear form of HIV-1 DNA deduced from the sequence of circular DNA junctions. J Acquir Immune Defic Syndr 1990, 3:852-858.
- [46]Whitcomb JM, Kumar R, Hughes SH: Sequence of the circle junction of human immunodeficiency virus type 1: implications for reverse transcription and integration. J Virol 1990, 64:4903-4906.
- [47]Saenz DT, Poeschla EM: FIV: from lentivirus to lentivector. J Gene Med 2004, 6(Suppl 1):S95-104.
- [48]Kemler I, Azmi I, Poeschla EM: The critical role of proximal gag sequences in feline immunodeficiency virus genome encapsidation. Virology 2004, 327:111-120.
- [49]Kemler I, Barraza R, Poeschla EM: Mapping the encapsidation determinants of feline immunodeficiency virus. J Virol 2002, 76:11889-11903.
- [50]Browning MT, Mustafa F, Schmidt RD, Lew KA, Rizvi TA: Delineation of sequences important for efficient packaging of feline immunodeficiency virus RNA. J Gen Virol 2003, 84:621-627.
- [51]Bigornia L, Lockridge KM, Sparger EE: Construction and in vitro characterization of attenuated feline immunodeficiency virus long terminal repeat mutant viruses. J Virol 2001, 75:1054-1060.
- [52]Brown WC, Bissey L, Logan KS, Pedersen NC, Elder JH, Collisson EW: Feline immunodeficiency virus infects both CD4+ and CD8+ T lymphocytes. J Virol 1991, 65:3359-3364.
- [53]Troth SP, Dean AD, Hoover EA: In vivo CXCR4 expression, lymphoid cell phenotype, and feline immunodeficiency virus infection. Vet Immunol Immunopathol 2008, 123:97-105.
- [54]English RV, Johnson CM, Gebhard DH, Tompkins MB: In vivo lymphocyte tropism of feline immunodeficiency virus. J Virol 1993, 67:5175-5186.
- [55]Rogers AB, Mathiason CK, Hoover EA: Immunohistochemical localization of feline immunodeficiency virus using native species antibodies. Am J Pathol 2002, 161:1143-1151.
- [56]Obert LA, Hoover EA: Early pathogenesis of transmucosal feline immunodeficiency virus infection. J Virol 2002, 76:6311-6322.
- [57]Dow SW, Mathiason CK, Hoover EA: In vivo monocyte tropism of pathogenic feline immunodeficiency viruses. J Virol 1999, 73:6852-6861.
- [58]Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271:1582-1586.
- [59]Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997, 278:1291-1295.
- [60]Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, et al.: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997, 387:183-188.
- [61]Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, Bell SM, Combaret V, Puisieux A, Mighell AJ, et al.: Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 2003, 3:18. BioMed Central Full Text
- [62]Sambrook J, Russell DW: Molecular cloning: a laboratory manual. 3rd edition. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001.
PDF