期刊论文详细信息
Molecular Neurodegeneration
SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease
Annika Öhrfelt1  Kaj Blennow1  Henrik Zetterberg5  Anders Wallin1  Oskar Hansson3  Lennart Minthon3  Lucrezia Hausner4  Lutz Frölich4  William G Honer2  Gunnar Brinkmalm1  Ann Brinkmalm1 
[1]Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
[2]Department of Psychiatry, University of British Columbia, Vancouver, Canada
[3]Memory Clinic, Skåne University Hospital, Skåne, Sweden
[4]Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, University of Heidelberg, Mannheim, Germany
[5]UCL Institute of Neurology, Queen Square, London WC1N 3BG, London, UK
关键词: Selected reaction monitoring;    Immunopurification;    Mass spectrometry;    SNARE proteins;    SNAP-25;    Cerebrospinal fluid;    Biomarker;    Alzheimer’s disease;   
Others  :  1138625
DOI  :  10.1186/1750-1326-9-53
 received in 2014-07-08, accepted in 2014-10-02,  发布年份 2014
PDF
【 摘 要 】

Background

Synaptic degeneration is an early pathogenic event in Alzheimer’s disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples.

Results

We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer’s disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer’s disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer’s disease from controls with area under the curve of 0.901 (P < 0.0001).

Conclusions

We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.

【 授权许可】

   
2014 Brinkmalm et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150320065608190.pdf 1129KB PDF download
Figure 4. 43KB Image download
Figure 3. 63KB Image download
Figure 2. 91KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O: Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008, 321:1686-1689.
  • [2]Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ: Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008, 14:837-842.
  • [3]Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P: Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 1996, 103:603-618.
  • [4]DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990, 27:457-464.
  • [5]Honer WG: Pathology of presynaptic proteins in Alzheimer's disease: more than simple loss of terminals. Neurobiol Aging 2003, 24:1047-1062.
  • [6]Honer WG, Barr AM, Sawada K, Thornton AE, Morris MC, Leurgans SE, Schneider JA, Bennett DA: Cognitive reserve, presynaptic proteins and dementia in the elderly. Transl Psychiatry 2012, 2:e114.
  • [7]Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC: Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 2001, 56:127-129.
  • [8]Minger SL, Honer WG, Esiri MM, McDonald B, Keene J, Nicoll JA, Carter J, Hope T, Francis PT: Synaptic pathology in prefrontal cortex is present only with severe dementia in Alzheimer disease. J Neuropathol Exp Neurol 2001, 60:929-936.
  • [9]Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, Brayne C, Huppert FA, Paykel ES, McGee M, Jakes R, Honer WG, Harrington CR, Wischik CM: Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 2000, 157:623-636.
  • [10]Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ: Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007, 68:1501-1508.
  • [11]Scheff SW, Price DA, Schmitt FA, Mufson EJ: Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2006, 27:1372-1384.
  • [12]Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30:572-580.
  • [13]Blennow K, Zetterberg H: The application of cerebrospinal fluid biomarkers in early diagnosis of Alzheimer disease. Med Clin North Am 2013, 97:369-376.
  • [14]Jahn R, Sudhof TC: Membrane fusion and exocytosis. Annu Rev Biochem 1999, 68:863-911.
  • [15]Sudhof TC, Rothman JE: Membrane fusion: grappling with SNARE and SM proteins. Science 2009, 323:474-477.
  • [16]Davidsson P, Jahn R, Bergquist J, Ekman R, Blennow K: Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid: a new biochemical marker for synaptic pathology in Alzheimer disease? Mol Chem Neuropathol 1996, 27:195-210.
  • [17]Davidsson P, Puchades M, Blennow K: Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing. Electrophoresis 1999, 20:431-437.
  • [18]Thompson PM, Kelley M, Yao J, Tsai G, van Kammen DP: Elevated cerebrospinal fluid SNAP-25 in schizophrenia. Biol Psychiatry 2003, 53:1132-1137.
  • [19]Thompson PM, Rosenberger C, Holt S, Perrone-Bizzozero NI: Measuring synaptosomal associated protein-25 kDa in human cerebral spinal fluid. J Psychiatr Res 1998, 32:297-300.
  • [20]Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K: Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res 2010, 1362:13-22.
  • [21]Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M: Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res 2008, 7:386-399.
  • [22]Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B: Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 2012, 11:1709-1723.
  • [23]Greber S, Lubec G, Cairns N, Fountoulakis M: Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis 1999, 20:928-934.
  • [24]Shimohama S, Kamiya S, Taniguchi T, Akagawa K, Kimura J: Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s disease. Biochem Biophys Res Commun 1997, 236:239-242.
  • [25]Connell E, Darios F, Peak-Chew S, Soloviev M, Davletov B: N-terminal acetylation of the neuronal protein SNAP-25 is revealed by the SMI81 monoclonal antibody. Biochemistry 2009, 48:9582-9589.
  • [26]Fasshauer D, Sutton RB, Brunger AT, Jahn R: Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 1998, 95:15781-15786.
  • [27]Sutton RB, Fasshauer D, Jahn R, Brunger AT: Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998, 395:347-353.
  • [28]Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D: Common variants underlying cognitive ability: further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 2008, 7:355-364.
  • [29]Guerini FR, Agliardi C, Sironi M, Arosio B, Calabrese E, Zanzottera M, Bolognesi E, Ricci C, Costa AS, Galimberti D, Griffanti L, Bianchi A, Savazzi F, Mari D, Scarpini E, Baglio F, Nemni R, Clerici M: Possible Association between SNAP-25 Single Nucleotide Polymorphisms and Alterations of Categorical Fluency and Functional MRI Parameters in Alzheimer’s Disease. J Alzheimers Dis 2014, 42:1015-1028.
  • [30]Blennow K, Hampel H, Weiner M, Zetterberg H: Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010, 6:131-144.
  • [31]Blennow K, Zetterberg H, Minthon L, Lannfelt L, Strid S, Annas P, Basun H, Andreasen N: Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett 2007, 419:18-22.
  • [32]Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F: New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 2012, 73:504-517.
  • [33]Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82:239-259.
  • [34]McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34:939-944.
  • [35]Albert MS: Changes in cognition. Neurobiol Aging 2011, 32 Suppl 1:S58-S63.
  • [36]American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. 4th edition. Washington DC: American Psychiatric Association; 1994.
  • [37]Nordlund A, Rolstad S, Hellstrom P, Sjogren M, Hansen S, Wallin A: The Goteborg MCI study: mild cognitive impairment is a heterogeneous condition. J Neurol Neurosurg Psychiatry 2005, 76:1485-1490.
  • [38]World Health Organization: The ICD-10 Classification of Mental and Behavioural Disorders. Geneva; 1992.
  • [39]Öhrfelt A, Zetterberg H, Andersson K, Persson R, Secic D, Brinkmalm G, Wallin A, Mulugeta E, Francis PT, Vanmechelen E, Aarsland D, Ballard C, Blennow K, Westman-Brinkmalm A: Identification of Novel alpha-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method. Neurochem Res 2011, 36:2029-2042.
  • [40]Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS: Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 1997, 78:99-110.
  • [41]Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC: The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 1989, 109:3039-3052.
  • [42]Brinkmalm G, Portelius E, Ohrfelt A, Mattsson N, Persson R, Gustavsson MK, Vite CH, Gobom J, Mansson J-E, Nilsson J, Halim A, Larson G, Ruetschi U, Zetterberg H, Blennow K, Brinkmalm A: An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid beta and amyloid precursor protein in human and cat cerebrospinal fluid. J Mass Spectrom 2012, 47:591-603.
  文献评价指标  
  下载次数:17次 浏览次数:27次