| Orphanet Journal of Rare Diseases | |
| De novo deletions and duplications of 17q25.3 cause susceptibility to cardiovascular malformations | |
| S. R. Lalani4  S.W. Cheung4  C. Shaw4  S. M. Ware5  J.W. Belmont4  C. Bacino4  W. Bi4  A. Patel4  F. Xia4  M. Azamian4  A. I. A. Franklin1  E. Austin4  P. Magoulas4  C. H. Ward Melver2  T. P. Bohan3  J. A. Rosenfeld4  L. C. Burrage4  R. A. James4  F. J. Probst4  | |
| [1] Department of Developmental Pediatrics, Texas Children’s Hospital, Houston, TX, USA;Genetic Center, Children’s Hospital Medical Center Of Akron, Akron, OH, USA;Department of Neurology, Memorial Hermann Texas Medical Center, Houston, TX, USA;Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA;Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA | |
| 关键词: Intellectual disability; Congenital heart defects; Copy number variations; 17q25 Deletion; | |
| Others : 1219126 DOI : 10.1186/s13023-015-0291-0 |
|
| received in 2015-03-28, accepted in 2015-06-02, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Genomic disorders resulting from deletion or duplication of genomic segments are known to be an important cause of cardiovascular malformations (CVMs). In our previous study, we identified a unique individual with a de novo 17q25.3 deletion from a study of 714 individuals with CVM.
Methods
To understand the contribution of this locus to cardiac malformations, we reviewed the data on 60,000 samples submitted for array comparative genomic hybridization (CGH) studies to Medical Genetics Laboratories at Baylor College of Medicine, and ascertained seven individuals with segmental aneusomy of 17q25. We validated our findings by studying another individual with a de novo submicroscopic deletion of this region from Cytogenetics Laboratory at Cincinnati Children’s Hospital. Using bioinformatic analyses including protein-protein interaction network, human tissue expression patterns, haploinsufficiency scores, and other annotation systems, including a training set of 251 genes known to be linked to human cardiac disease, we constructed a pathogenicity score for cardiac phenotype for each of the 57 genes within the terminal 2.0 Mb of 17q25.3.
Results
We found relatively high penetrance of cardiovascular defects (~60 %) with five deletions and three duplications, observed in eight unrelated individuals. Distinct cardiac phenotypes were present in four of these subjects with non-recurrent de novo deletions (range 0.08 Mb–1.4 Mb) in the subtelomeric region of 17q25.3. These included coarctation of the aorta (CoA), total anomalous pulmonary venous return (TAPVR), ventricular septal defect (VSD) and atrial septal defect (ASD). Amongst the three individuals with variable size duplications of this region, one had patent ductus arteriosus (PDA) at 8 months of age.
Conclusion
The distinct cardiac lesions observed in the affected patients and the bioinformatics analyses suggest that multiple genes may be plausible drivers of the cardiac phenotype within this gene-rich critical interval of 17q25.3.
【 授权许可】
2015 Probst et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150715063357576.pdf | 2432KB | ||
| Fig. 2. | 22KB | Image | |
| Fig. 1. | 72KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
【 参考文献 】
- [1]Lalani SR, Shaw C, Wang X, Patel A, Patterson LW, Kolodziejska K et al.. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet. 2013; 21(2):173-81.
- [2]Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM et al.. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009; 41(8):931-5.
- [3]Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP et al.. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A. 2011; 108(7):2915-20.
- [4]Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR et al.. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet. 2012; 81(6):542-54.
- [5]Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Davies R, Yang SW et al.. Rare copy number variants contribute to congenital left-sided heart disease. PLoS Genet. 2012; 8(9): Article ID e1002903
- [6]Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K et al.. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008; 359(16):1685-99.
- [7]Dolcetti A, Silversides CK, Marshall CR, Lionel AC, Stavropoulos DJ, Scherer SW et al.. 1q21.1 Microduplication expression in adults. Genet Med. 2013; 15(4):282-9.
- [8]Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B et al.. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 2012; 8(8): Article ID e1002843
- [9]Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, Hummel M et al.. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet. 2008; 82(1):214-21.
- [10]Fagerberg CR, Graakjaer J, Heinl UD, Ousager LB, Dreyer I, Kirchhoff M et al.. Heart defects and other features of the 22q11 distal deletion syndrome. Eur J Med Genet. 2013; 56(2):98-107.
- [11]Lukusa T, Fryns JP. Pure de novo 17q25.3 micro duplication characterized by micro array CGH in a dysmorphic infant with growth retardation, developmental delay and distal arthrogryposis. Genet Couns. 2010; 21(1):25-34.
- [12]Christofolini DM, de Paula Ramos MA, Kulikowski LD, da Silva Bellucco FT, Belangero SI, Brunoni D et al.. Subtelomeric rearrangements and copy number variations in people with intellectual disabilities. J Intellect Disabil Res. 2010; 54(10):938-42.
- [13]Hackmann K, Stadler A, Schallner J, Franke K, Gerlach EM, Schrock E et al.. Severe intellectual disability, West syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3. Am J Med Genet A. 2013; 161A(12):3144-9.
- [14]Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, Annunzio GD et al.. Severe presentation of WDR62 mutation: is there a role for modifying genetic factors? Am J Med Genet A. 2014; 164A(9):2161-71.
- [15]Brisset S, Kasakyan S, L'Hermine AC, Mairovitz V, Gautier E, Aubry MC et al.. De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency. Prenat Diagn. 2006; 26(3):206-13.
- [16]Fryns JP, Parloir C, Van den Berghe H. Partial trisomy 17q. Karyotype: 46, XY, der(21), t(17;21)(q22;p13). Hum Genet. 1979; 49(3):361-4.
- [17]Marques F, Heredia R, de Oliveira C, Cardoso MT, Mazzeu J, Pogue R. Partial trisomy 17q and partial monosomy 20q in a boy with craniosynostosis. Am J Med Genet A. 2015; 167A(2):412-6.
- [18]McCann E, Sweeney E, Sills J, May P, Smith S. Pfeiffer-type cardiocranial syndrome: a patient with features of this condition and with an unbalanced subtelomeric rearrangement involving chromosomes 1p and 17q. Clin Dysmorphol. 2006; 15(2):81-4.
- [19]Sarri C, Gyftodimou J, Avramopoulos D, Grigoriadou M, Pedersen W, Pandelia E et al.. Partial trisomy 17q22-qter and partial monosomy Xq27-qter in a girl with a de novo unbalanced translocation due to a postzygotic error: case report and review of the literature on partial trisomy 17qter. Am J Med Genet. 1997; 70(1):87-94.
- [20]Velagaleti GV, Jalal SM, Michaelis RC, Rowe TF, Nichols JR, Lockhart LH. Molecular cytogenetic characterization of a de novo unbalanced translocation leading to trisomy 17q25→qter and monosomy 18p11.3→pter in a girl with dysmorphic features. Clin Dysmorphol. 2003; 12(1):29-33.
- [21]Bacino CA, Kashork CD, Davino NA, Shaffer LG. Detection of a cryptic translocation in a family with mental retardation using FISH and telomere region-specific probes. Am J Med Genet. 2000; 92(4):250-5.
- [22]Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN et al.. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010; 31(12):1326-42.
- [23]Campbell IM, Rao M, Arredondo SD, Lalani SR, Xia Z, Kang SH et al.. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013; 9(9): Article ID e1003797
- [24]Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008; 83(5):610-5.
- [25]Kohler S, Schulz MH, Krawitz P, Bauer S, Dolken S, Ott CE et al.. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009; 85(4):457-64.
- [26]Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 2010; 6(10): Article ID e1001154
- [27]Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005; 33(Database issue):D514-7.
- [28]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al.. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9.
- [29]Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med. 2009; 1(3):390-9.
- [30]Lage K, Mollgard K, Greenway S, Wakimoto H, Gorham JM, Workman CT et al.. Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol. 2010; 6:381.
- [31]Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat Methods. 2009; 6(1):75-7.
- [32]Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C et al.. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012; 44(4):440-4.
- [33]Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B et al.. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014; 23(3):292-301.
- [34]Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ et al.. Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development. 2002; 129(7):1705-14.
- [35]Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H et al.. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene. 1999; 18(39):5373-80.
- [36]Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H et al.. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013; 123(8):3243-53.
- [37]Gupta IR, Baldwin C, Auguste D, Ha KC, El Andalousi J, Fahiminiya S et al.. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013; 50(5):330-8.
- [38]Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T et al.. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008; 102(6):703-10.
- [39]Miura S, Mishina Y. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs) is involved in BMP signaling through phosphorylation of SMADS and TAK1 in early mouse embryo. Dev Dyn. 2011; 240(11):2474-81.
- [40]Komada M, Soriano P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 1999; 13(11):1475-85.
- [41]Desai N, Sajjad J, Frishman WH. Urotensin II: a new pharmacologic target in the treatment of cardiovascular disease. Cardiol Rev. 2008; 16(3):142-53.
- [42]Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP et al.. Casein kinase 1delta functions at the centrosome and Golgi to promote ciliogenesis. Mol Biol Cell. 2014; 25(10):1629-40.
- [43]Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N et al.. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005; 434(7033):640-4.
PDF