期刊论文详细信息
Particle and Fibre Toxicology
Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics
Ana Patrícia Yatsuda4  AF Maarten Altelaar3  Albert JR Heck3  Vinicius Tragante1  Henk van den Toorn3  Ney Lemke2  Marcio Luis Acencio2  Harm Post3  Letícia Pollo-Oliveira4 
[1] Division of Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands;Botucatu Institute of Biosciences, UNESP - Univ Estadual Paulista, Distrito de Rubião Jr, s/n, Botucatu, São Paulo 18918-970, Brazil;Netherlands Proteomics Centre, Padualaan 8, Utrecht 3884 CH, The Netherlands;Faculdade de Ciências Farmacêuticas de Ribeirão Preto e Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Universidade de São Paulo, Av do Café , s/n, Ribeirão Preto, SP 14040-903, Brazil
关键词: Relative quantification;    Shotgun;    Secretome;    Neospora caninum;    Mass spectrometry;   
Others  :  823752
DOI  :  10.1186/1756-3305-6-335
 received in 2013-08-30, accepted in 2013-11-15,  发布年份 2013
PDF
【 摘 要 】

Background

The apicomplexan parasite Neospora caninum causes neosporosis, a disease that leads to abortion or stillbirth in cattle, generating an economic impact on the dairy and beef cattle trade. As an obligatory intracellular parasite, N. caninum needs to invade the host cell in an active manner to survive. The increase in parasite cytosolic Ca2+ upon contact with the host cell mediates critical events, including the exocytosis of phylum-specific secretory organelles and the activation of the parasite invasion motor. Because invasion is considered a requirement for pathogen survival and replication within the host, the identification of secreted proteins (secretome) involved in invasion may be useful to reveal interesting targets for therapeutic intervention.

Methods

To chart the currently missing N. caninum secretome, we employed mass spectrometry-based proteomics to identify proteins present in the N. caninum tachyzoite using two different approaches. The first approach was identifying the proteins present in the tachyzoite-secreted fraction (ESA). The second approach was determining the relative quantification through peptide stable isotope labelling of the tachyzoites submitted to an ethanol secretion stimulus (discharged tachyzoite), expecting to identify the secreted proteins among the down-regulated group.

Results

As a result, 615 proteins were identified at ESA and 2,011 proteins quantified at the discharged tachyzoite. We have analysed the connection between the secreted and the down-regulated proteins and searched for putative regulators of the secretion process among the up-regulated proteins. An interaction network was built by computational prediction involving the up- and down-regulated proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD000424.

Conclusions

The comparison between the protein abundances in ESA and their measure in the discharged tachyzoite allowed for a more precise identification of the most likely secreted proteins. Information from the network interaction and up-regulated proteins was important to recognise key proteins potentially involved in the metabolic regulation of secretion. Our results may be helpful to guide the selection of targets to be investigated against Neospora caninum and other Apicomplexan organisms.

【 授权许可】

   
2013 Pollo-Oliveira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713013306213.pdf 2310KB PDF download
Figure 5. 94KB Image download
Figure 4. 140KB Image download
Figure 3. 129KB Image download
Figure 2. 65KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Dubey JP, Lindsay DS: Neosporosis. Parasitol Today 1993, 9(12):452-458.
  • [2]Dubey JP, Schares G, Ortega-Mora LM: Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev 2007, 20(2):323.
  • [3]Reichel MP, Alejandra Ayanegui-Alcerreca M, Gondim LFP, Ellis JT: What is the global economic impact of Neospora caninum in cattle - the billion dollar question. Int J Parasitol 2013, 43(2):133-142.
  • [4]Carruthers VB, Boothroyd JC: Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 2007, 10(1):82-89.
  • [5]Baum J, Gilberger T-W, Frischknecht F, Meissner M: Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol 2008, 24(12):557-563.
  • [6]Santos JM, Soldati-Favre D: Invasion factors are coupled to key signalling events leading to the establishment of infection in apicomplexan parasites. Cell Microbiol 2011, 13(6):787-796.
  • [7]Carruthers VB, Sibley LD: Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 1999, 31(2):421-428.
  • [8]Lovett JL, Marchesini N, Moreno SNJ, Sibley LD: Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1,4,5-triphosphate (IP3)/ryanodine-sensitive stores. J Biol Chem 2002, 277(29):25870-25876.
  • [9]Billker O, Lourido S, Sibley LD: Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 2009, 5(6):612-622.
  • [10]Carruthers VB, Moreno SNJ, Sibley LD: Ethanol and acetaldehyde elevate intracellular Ca2+ and stimulate microneme discharge in Toxoplasma gondii. Biochem J 1999, 342:379-386.
  • [11]Hemphill A, Debache K, Monney T, Schorer M, Guionaud C, Alaeddine F, Mueller N, Mueller J: Proteins mediating the Neospora caninum-host cell interaction as targets for vaccination. Front Biosci (Elite Ed) 2013, 5:23-36.
  • [12]Lee EG, Kim JH, Shin YS, Shin GW, Suh MD, Kim DY, Kim YH, Kim GS, Jung TS: Establishment of a two-dimensional electrophoresis map for Neospora caninum tachyzoites by proteomics. Proteomics 2003, 3(12):2339-2350.
  • [13]Lee EG, Kim JH, Shin YS, Shin GW, Kim YH, Kim GS, Kim DY, Jung TS, Suh MD: Two-dimensional gel electrophoresis and immunoblot analysis of Neospora caninum tachyzoites. J Vet Sci 2004, 5(2):139-145.
  • [14]Lee EG, Kim JH, Shin YS, Shin GW, Kim YR, Palaksha KJ, Kim DY, Yamane I, Kim YH, Kim GS, et al.: Application of proteomics for comparison of proteome of Neospora caninum and Toxoplasma gondii tachyzoites. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 815(1–2):305-314.
  • [15]Shin YS, Lee EG, Shin GW, Kim YR, Lee EY, Kim JH, Jang H, Gershwin LJ, Kim DY, Kim YH, et al.: Identification of antigenic proteins from Neospora caninum recognized by bovine immunoglobulins M, E, A and G using immunoproteomics. Proteomics 2004, 4(11):3600-3609.
  • [16]Shin YS, Shin GW, Kim YR, Lee EY, Yang HH, Palaksha KJ, Youn HJ, Kim JH, Kim DY, Marsh AE, et al.: Comparison of proteome and antigenic proteome between two Neospora caninum isolates. Vet Parasitol 2005, 134(1–2):41-52.
  • [17]Zhang H, Lee E-g, Yu L, Kawano S, Huang P, Liao M, Kawase O, Zhang G, Zhou J, Fujisaki K, et al.: Identification of the cross-reactive and species-specific antigens between Neospora caninum and Toxoplasma gondii tachyzoites by a proteomics approach. Parasitol Res 2011, 109(3):899-911.
  • [18]Marugan-Hernandez V, Alvarez-Garcia G, Risco-Castillo V, Regidor-Cerrillo J, Miguel Ortega-Mora L: Identification of Neospora caninum proteins regulated during the differentiation process from tachyzoite to bradyzoite stage by DIGE. Proteomics 2010, 10(9):1740-1750.
  • [19]Regidor-Cerrillo J, Alvarez-Garcia G, Pastor-Fernandez I, Marugan-Hernandez V, Gomez-Bautista M, Ortega-Mora LM: Proteome expression changes among virulent and attenuated Neospora caninum isolates. J Proteomics 2012, 75(8):2306-2318.
  • [20]Altelaar AFM, Munoz J, Heck AJR: Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 2013, 14(1):35-48.
  • [21]Sohn CS, Cheng TT, Drummond ML, Peng ED, Vermont SJ, Xia D, Cheng SJ, Wastling JM, Bradley PJ: Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach. PLoS One 2011, 6(4):e18383.
  • [22]Rocchi MS, Bartley PM, Inglis NF, Collantes-Fernandez E, Entrican G, Katzer F, Innes EA: Selection of Neospora caninum antigens stimulating bovine CD4(+ve) T cell responses through immuno-potency screening and proteomic approaches. Vet Res 2011, 42:91. BioMed Central Full Text
  • [23]Marugan-Hernandez V, Alvarez-Garcia G, Tomley F, Hemphill A, Regidor-Cerrillo J, Ortega-Mora LM: Identification of novel rhoptry proteins in Neospora caninum by LC/MS-MS analysis of subcellular fractions. J Proteomics 2011, 74(5):629-642.
  • [24]Swaney DL, McAlister GC, Coon JJ: Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 2008, 5(11):959-964.
  • [25]Frese CK, Altelaar AFM, Hennrich ML, Nolting D, Zeller M, Griep-Raming J, Heck AJR, Mohammed S: Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-orbitrap velos. J Proteome Res 2011, 10(5):2377-2388.
  • [26]Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002, 74(20):5383-5392.
  • [27]Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003, 75(17):4646-4658.
  • [28]Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S: Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 2004, 17(4):349-356.
  • [29]Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, et al.: ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 2008, 36:D553-D556.
  • [30]Reid AJ, Vermont SJ, Cotton JA, Harris D, Hill-Cawthorne GA, Koenen-Waisman S, Latham SM, Mourier T, Norton R, Quail MA, et al.: Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: coccidia differing in host range and transmission strategy. Plos Pathog 2012, 8(3):E1002567.
  • [31]Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 2009, 4(4):484-494.
  • [32]Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 2009, 81(11):4493-4501.
  • [33]Valente GT, Acencio ML, Martins C, Lemke N: The development of a universal in silico predictor of protein-protein interactions. PLoS One 2013, 8(5):e65587.
  • [34]Rao HB, Zhu F, Yang GB, Li ZR, Chen YZ: Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 2011, 39:W385-W390.
  • [35]Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27(3):431-432.
  • [36]Aye TT, Scholten A, Taouatas N, Varro A, Van Veen TAB, Vos MA, Heck AJR: Proteome-wide protein concentrations in the human heart. Mol Biosyst 2010, 6(10):1917-1927.
  • [37]Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC: Proteomic analysis of trypanosoma cruzi secretome: characterization of Two populations of extracellular vesicles and soluble proteins. J Proteome Res 2013, 12(2):883-897.
  • [38]Corrales RM, Sereno D, Mathieu-Daude F: Deciphering the Leishmania exoproteome: what we know and what we can learn. FEMS Immunol Med Microbiol 2010, 58(1):27-38.
  • [39]Zhou XW, Kafsack BFC, Cole RN, Beckett P, Shen RF, Carruthers VB: The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J Biol Chem 2005, 280(40):34233-34244.
  • [40]Tuo WB, Fetterer R, Jenkins M, Dubey JP: Identification and characterization of Neospora caninum cyclophilin that elicits gamma interferon production. Infect Immun 2005, 73(8):5093-5100.
  • [41]Mineo TWP, Oliveira CJF, Silva DAO, Oliveira LL, Abatepaulo AR, Ribeiro DP, Ferreira BR, Mineo JR, Silva JS: Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration. Int J Parasitol 2010, 40(7):797-805.
  • [42]Ibrahim HM, Xuan X, Nishikawa Y: Toxoplasma gondii cyclophilin 18 regulates the proliferation and migration of murine macrophages and spleen cells. Clin Vaccine Immunol 2010, 17(9):1322-1329.
  • [43]Krucken J, Greif G, von Samson-Himmelstjerna G: In silico analysis of the cyclophilin repertoire of apicomplexan parasites. Parasit Vectors 2009, 2(1):27. BioMed Central Full Text
  • [44]Altelaar AF, Frese CK, Preisinger C, Hennrich ML, Schram AW, Timmers HT, Heck AJ, Mohammed S: Benchmarking stable isotope labeling based quantitative proteomics. J Proteomics 2013, 88:14-26.
  • [45]Sheiner L, Santos JM, Klages N, Parussini F, Jemmely N, Friedrich N, Ward GE, Soldati-Favre D: Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol Microbiol 2010, 77(4):912-929.
  • [46]Laliberte J, Carruthers VB: Toxoplasma gondii toxolysin 4 is an extensively processed putative metalloproteinase secreted from micronemes. Mol Biochem Parasitol 2011, 177(1):49-56.
  • [47]Brydges SD, Zhou XW, Huynh M-H, Harper JM, Mital J, Adjogble KDZ, Daeubener W, Ward GE, Carruthers VB: Targeted deletion of MIC5 enhances trimming proteolysis of Toxoplasma invasion proteins. Eukaryot Cell 2006, 5(12):2174-2183.
  • [48]Lagal V, Binder EM, Huynh M-H, Kafsack BFC, Harris PK, Diez R, Chen D, Cole RN, Carruthers VB, Kim K: Toxoplasma gondii protease TgSUB1 is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites. Cell Microbiol 2010, 12(12):1792-1808.
  • [49]Zhang H, Compaore MKA, Lee E-G, Liao M, Zhang G, Sugimoto C, Fujisaki K, Nishikawa Y, Xuan X: Apical membrane antigen 1 is a cross-reactive antigen between Neospora caninum and Toxoplasma gondii, and the anti-NcAMA1 antibody inhibits host cell invasion by both parasites. Mol Biochem Parasitol 2007, 151(2):205-212.
  • [50]Keller N, Naguleswaran A, Cannas A, Vonlaufen N, Bienz M, Bjorkman C, Bohne W, Hemphill A: Identification of a Neospora caninum microneme protein (NcMIC1) which interacts with sulfated host cell surface glycosaminoglycans. Infect Immun 2002, 70(6):3187-3198.
  • [51]Pereira LM, Candido-Silva JA, De Vries E, Yatsuda AP: A new thrombospondin-related anonymous protein homologue in Neospora caninum (NcMIC2-like1). Parasitology 2011, 138(3):287-297.
  • [52]Naguleswaran A, Cannas A, Keller N, Vonlaufen N, Schares G, Conraths FJ, Bjorkman C, Hemphill A: Neospora caninum microneme protein NcMIC3: secretion, subcellular localization, and functional involvement in host cell interaction. Infect Immun 2001, 69(10):6483-6494.
  • [53]Ellis J, Miller C, Quinn H, Ryce C, Reichel MP: Evaluation of recombinant proteins of Neospora caninum as vaccine candidates (in a mouse model). Vaccine 2008, 26(47):5989-5996.
  • [54]Keller N, Riesen M, Naguleswaran A, Vonlaufen N, Stettler R, Leepin A, Wastling JM, Hemphill A: Identification and characterization of a Neospora caninum microneme-associated protein (NcMIC4) that exhibits unique lactose-binding properties. Infect Immun 2004, 72(8):4791-4800.
  • [55]Lovett JL, Howe DK, Sibley LD: Molecular characterization of a thrombospondin-related anonymous protein homologue in Neospora caninum. Mol Biochem Parasitol 2000, 107(1):33-43.
  • [56]Jewett TJ, Sibley LD: The toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J Biol Chem 2004, 279(10):9362-9369.
  • [57]Reiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, Dubremetz JF, Soldati D: Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 2001, 152(3):563-578.
  • [58]Kessler H, Herm-Goetz A, Hegge S, Rauch M, Soldati-Favre D, Frischknecht F, Meissner M: Microneme protein 8 - a new essential invasion factor in Toxoplasma gondii. J Cell Sci 2008, 121(7):947-956.
  • [59]Li RW, Tuo W: Neospora caninum: comparative gene expression profiling of Neospora caninum wild type and a temperature sensitive clone. Exp Parasitol 2011, 129(4):346-354.
  • [60]Kafsack BFC, Pena JDO, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB: Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 2009, 323(5913):530-533.
  • [61]Kawase O, Nishikawa Y, Bannai H, Igarashi M, Matsuo T, Xuan X: Characterization of a novel thrombospondin-related protein in Toxoplasma gondii. Parasitol Int 2010, 59(2):211-216.
  • [62]Singh S, Chitnis CE: Signalling mechanisms involved in apical organelle discharge during host cell invasion by apicomplexan parasites. Microbes Infect 2012, 14(10):820-824.
  • [63]Fritz HM, Bowyer PW, Bogyo M, Conrad PA, Boothroyd JC: Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance. PLoS One 2012, 7(1):e29955.
  • [64]Tyler JS, Boothroyd JC: The C-terminus of toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PloS Pathog 2011, 7(2):E1001282.
  • [65]Straub KW, Cheng SJ, Sohn CS, Bradley PJ: Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 2009, 11(4):590-603.
  • [66]Hajagos BE, Turetzky JM, Peng ED, Cheng SJ, Ryan CM, Souda P, Whitelegge JP, Lebrun M, Dubremetz J-F, Bradley PJ: Molecular dissection of novel trafficking and processing of the Toxoplasma gondii rhoptry metalloprotease toxolysin-1. Traffic 2012, 13(2):292-304.
  • [67]Miller SA, Thathy V, Ajioka JW, Blackman MJ, Kim K: TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase. Mol Microbiol 2003, 49(4):883-894.
  • [68]Morris MT, Carruthers VB: Identification and partial characterization of a second Kazal inhibitor in Toxoplasma gondii. Mol Biochem Parasitol 2003, 128(1):119-122.
  • [69]Pszenny V, Ledesma BE, Matrajt M, Duschak VG, Bontempi EJ, Dubremetz JF, Angel SO: Subcellular localization and post-secretory targeting of TgPI, a serine proteinase inhibitor from Toxoplasma gondii. Mol Biochem Parasitol 2002, 121(2):283-286.
  • [70]Haldorson GJ, Mathison BA, Wenberg K, Conrad PA, Dubey JP, Trees AJ, Yamane I, Baszler TV: Immunization with native surface protein NcSRS2 induces a Th2 immune response and reduces congenital Neospora caninum transmission in mice. Int J Parasitol 2005, 35(13):1407-1415.
  • [71]Baszler TV, Shkap V, Mwangi W, Davies CJ, Mathison BA, Mazuz M, Resnikov D, Fish L, Leibovitch B, Staska LM, et al.: Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites. Clin Vaccine Immunol 2008, 15(4):659-667.
  • [72]Wu X-N, Lin J, Lin X, Chen J, Chen Z-L, Lin J-Y: Multicomponent DNA vaccine-encoding Toxoplasma gondii GRA1 and SAG1 primes: anti-Toxoplasma immune response in mice. Parasitol Res 2012, 111(5):2001-2009.
  • [73]Meng M, He S, Zhao G, Bai Y, Zhou H, Cong H, Lu G, Zhao Q, Zhu XQ: Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice. Parasit Vectors 2012, 5:273. BioMed Central Full Text
  • [74]Lee Y-H, Shin D-W, Lee J-H, Nam H-W, Ahn M-H: Vaccination against murine toxoplasmosis using recombinant Toxoplasma gondii SAG3 antigen alone or in combination with Quil A. Yonsei Med J 2007, 48(3):396-404.
  • [75]Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR III, Cowman AF, Tonkin CJ: Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PloS Pathog 2011, 7(9):e1002222.
  • [76]Shanmugasundram A, Gonzalez-Galarza FF, Wastling JM, Vasieva O, Jones AR: Library of apicomplexan metabolic pathways: a manually curated database for metabolic pathways of apicomplexan parasites. Nucleic Acids Res 2013, 41(D1):D706-D713.
  • [77]SMART, Simple Modular Architecture Research Tool. http://smart.embl.de/ webcite
  • [78]Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD: Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010, 465(7296):359-U118.
  • [79]Pierrot C, Freville A, Olivier C, Souplet V, Khalife J: Inhibition of protein-protein interactions in plasmodium falciparum: future drug targets. Curr Pharm Des 2012, 18(24):3522-3530.
  • [80]Prosite, Database of protein domains, families and functional sites. http://prosite.expasy.org/ webcite
  • [81]Cassola A, Frasch AC: An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein. J Biol Chem 2009, 284(50):35015-35028.
  • [82]Rogelj B, Godin KS, Shaw CE, Ule J: The functions of glycine-rich regions in TDP-43, FUS and related Rna-binding proteins. In RNA Binding Proteins. Edited by Lorkovic ZJ. Austin, Texas: Landes Bioscience; 2012. ISBN 978-1-58706-656-6
  • [83]Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, et al.: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2013, 41(D1):D1063-D1069.
  文献评价指标  
  下载次数:57次 浏览次数:28次