期刊论文详细信息
Molecular Neurodegeneration
Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death
Iok-Hou Pang2  Abbot F. Clark1  Yang Liu2  Shreyasi Choudhury1 
[1] Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA;Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
关键词: Neuroprotection;    Retinal ganglion cell;    Optic nerve injury;    Caspase-7;   
Others  :  1224820
DOI  :  10.1186/s13024-015-0039-2
 received in 2015-04-14, accepted in 2015-08-19,  发布年份 2015
PDF
【 摘 要 】

Background

Axonal injury of the optic nerve (ON) is involved in various ocular diseases, such as glaucoma and traumatic optic neuropathy, which leads to apoptotic death of retinal ganglion cells (RGCs) and loss of vision. Caspases have been implicated in RGC pathogenesis. However, the role of caspase-7, a functionally unique caspase, in ON injury and RGC apoptosis has not been reported previously. The purpose of this study is to evaluate the role of caspase-7 in ON injury-induced RGC apoptosis.

Results

C57BL/6 (wildtype, WT) and caspase-7 knockout (Casp7 −/− ) mice were used. We show that ON crush activated caspase-7 and calpain-1, an upstream activator of caspase-7, in mouse RGCs, as well as hydrolysis of kinectin and co-chaperone P23, specific substrates of caspase-7. ON crush caused a progressive loss of RGCs to 28 days after injury. Knockout of caspase-7 partially and significantly protected against the ON injury-induced RGC loss; RGC density at 28 days post ON crush in Casp7 −/− mice was approximately twice of that in WT ON injured retinas. Consistent with changes in RGC counts, spectral-domain optical coherence tomography analysis revealed that ON crush significantly reduced the in vivo thickness of the ganglion cell complex layer (including ganglion cell layer, nerve fiber layer, and inner plexiform layer) in the retina. The ON crush-induced thinning of retinal layer was significantly ameliorated in Casp7 −/− mice when compared to WT mice. Moreover, electroretinography analysis demonstrated a decline in the positive component of scotopic threshold response amplitude in ON crushed eyes of the WT mice, whereas this RGC functional response was significantly higher in Casp7 −/− mice at 28 days post injury.

Conclusion

Altogether, our findings indicate that caspase-7 plays a critical role in ON injury-induced RGC death, and inhibition of caspase-7 activity may be a novel therapeutic strategy for glaucoma and other neurodegenerative diseases of the retina.

【 授权许可】

   
2015 Choudhury et al.

【 预 览 】
附件列表
Files Size Format View
20150914042110878.pdf 3254KB PDF download
Fig. 7. 73KB Image download
Fig. 6. 100KB Image download
Fig. 5. 202KB Image download
Fig. 4. 90KB Image download
Fig. 3. 23KB Image download
Fig. 2. 56KB Image download
Fig. 1. 29KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002; 295(5557):1070-3.
  • [2]Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA et al.. Glaucoma alters the circadian timing system. PLoS One. 2008; 3(12):e3931.
  • [3]Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010; 11(9):621-32.
  • [4]Zalewska R, Zalewski B, Reszec J, Mariak Z, Zimnoch L, Proniewska-Skretek E. The expressions of Fas and caspase-3 in human glaucomatous optic nerve axons. Med Sci Monit. 2008; 14:BR274-8.
  • [5]Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N et al.. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2011; 2:e173.
  • [6]Kermer P, Klocker N, Labes M, Thomsen S, Srinivasan A, Bahr M. Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett. 1999; 453:361-4.
  • [7]Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M. Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Mol Brain Res. 2000; 85:144-50.
  • [8]Kurimoto T, Miyoshi T, Suzuki A, Yakura T, Watanabe M, Mimura O et al.. Apoptotic death of beta cells after optic nerve transection in adult cats. J Neurosci. 2003; 23(10):4023-8.
  • [9]Weishaupt JH, Diem R, Kermer P, Krajewski S, Reed JC, Bahr M. Contribution of caspase-8 to apoptosis of axotomized rat retinal ganglion cells in vivo. Neurobiol Dis. 2003; 13:124-35.
  • [10]Cheung ZH, Chan Y-M, Siu FKW, Yip HK, Wu W, Leung MCP et al.. Regulation of caspase activation in axotomized retinal ganglion cells. Mol Cell Neurosci. 2004; 25:383-93.
  • [11]Monnier PP, D’Onofrio PM, Magharious M, Hollander AC, Tassew N, Szydlowska K et al.. Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci. 2011; 31(29):10494-505.
  • [12]Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Grosskreutz CL. Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res. 2002; 25:389-95.
  • [13]McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF et al.. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci. 2002; 43:1077-87.
  • [14]Tahzib NG, Ransom NL, Reitsamer HA, McKinnon SJ. Alpha-fodrin is cleaved by caspase-3 in a chronic ocular hypertension (COH) rat model of glaucoma. Brain Res Bull. 2004; 62:491-5.
  • [15]Huang W, Dobberfuhl A, Filippopoulos T, Ingelsson M, Fileta JB, Poulin NR et al.. Transcriptional up-regulation and activation of initiating caspases in experimental glaucoma. Am J Pathol. 2005; 167:673-81.
  • [16]Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res. 2005; 1057:17-28.
  • [17]Levkovitch-Verbin H, Harizman N, Dardik R, Nisgav Y, Vander S, Melamed S. Regulation of cell death and survival pathways in experimental glaucoma. Exp Eye Res. 2007; 85:250-8.
  • [18]Lam TT, Abler AS, Tso MOM. Apoptosis and caspases after ischemia-reperfusion injury in rat retina. Invest Ophthalmol Vis Sci. 1999; 40:967-75.
  • [19]Produit-Zengaffinen N, Pournaras CJ, Schorderet DF. Retinal ischemia-induced apoptosis is associated with alteration in Bax and Bcl-x(L) expression rather than modifications in Bak and Bcl-2. Mol Vis. 2009; 15:2101-10.
  • [20]Lulli M, Witort E, Papucci L, Torre E, Schipani C, Bergamini C et al.. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Invest Ophthalmol Vis Sci. 2012; 53(13):8295-302.
  • [21]Visgneswara V, Berry M, Logan A, Ahmed Z. Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One. 2012; 7(12):e53473.
  • [22]Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010; 42(1):21-4.
  • [23]Machleidt T, Geller P, Schwandner R, Scherer G, Kronke M. Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Lett. 1998; 436:51-4.
  • [24]Boucher D, Blais V, Denault JB. Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A. 2012; 109(15):5669-74.
  • [25]Patwardhan CA, Fauq A, Peterson LB, Miller C, Blagg BS, Chadli A. Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem. 2013; 288(10):7313-25.
  • [26]Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008; 105(35):12815-9.
  • [27]Demon D, Van Damme P, Vanden Berghe T, Deceuninck A, Van Durme J, Verspurten J et al.. Proteome-wide substrate analysis indicates substrate exclusion as a mechanism to generate caspase-7 versus caspase-3 specificity. Mol Cell Proteomics. 2009; 8(12):2700-14.
  • [28]Larner SF, McKinsey DM, Hayes RL, Wang KKW. Caspase 7: increased expression and activation after traumatic brain injury in rats. J Neurochem. 2005; 94(1):97-108.
  • [29]Gafni J, Cong X, Chen SF, Gibson BW, Ellerby LM. Calpain-1 cleaves and activates caspase-7. J Biol Chem. 2009; 284(37):25441-9.
  • [30]Pang IH, Clark AF. Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma. 2007; 16(5):483-505.
  • [31]Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF. Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Invest Ophthalmol Vis Sci. 2014; 55(6):3766-74.
  • [32]Levkovitch-Verbin H, Dardik R, Vander S, Melamed S. Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res. 2010; 91(2):127-34.
  • [33]Azuma M, Shearer TR. The role of calcium-activated protease calpain in experimental retinal pathology. Surv Ophthalmol. 2008; 53(2):150-63.
  • [34]Nakazawa T, Shimura M, Mourin R, Kondo M, Yokokura S, Saido TC et al.. Calpain-mediated degradation of G-substrate plays a critical role in retinal excitotoxicity for amacrine cells. J Neurosci Res. 2009; 87(6):1412-23.
  • [35]Huang W, Fileta J, Rawe I, Qu J, Grosskreutz CL. Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010; 51(6):3049-54.
  • [36]Mizukoshi S, Nakazawa M, Sato K, Ozaki T, Metoki T, Ishiguro S. Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration. Exp Eye Res. 2010; 91(3):353-61.
  • [37]Paquet-Durand F, Sanges D, McCall J, Silva J, van Veen T, Marigo V et al.. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem. 2010; 115(4):930-40.
  • [38]Choudhury S, Bhootada Y, Gorbatyuk O, Gorbatyuk M. Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration. Cell Death Dis. 2013; 4:e528.
  • [39]Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW et al.. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2 J glaucoma. J Cell Biol. 2007; 179(7):1523-37.
  • [40]Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW. Progressive ganglion cell loss and optic nerve degeneration in DBA/2 J mice is variable and asymmetric. BMC Neurosci. 2006; 7:66. BioMed Central Full Text
  • [41]Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983; 95(5):673-91.
  • [42]Allcutt D, Berry M, Sievers J. A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Brain Res. 1984; 318(2):219-30.
  • [43]Li Y, Schlamp CL, Nickells RW. Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999; 40(5):1004-8.
  • [44]Johnson JL, Toft DO. A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem. 1994; 269(40):24989-93.
  • [45]Felts SJ, Toft DO. p23, a simple protein with complex activities. Cell Stress Chaperones. 2003; 8(2):108-13.
  • [46]Echtenkamp FJ, Zelin E, Oxelmark E, Woo JI, Andrews BJ, Garabedian M et al.. Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol Cell. 2011; 43(2):229-41.
  • [47]Grad I, McKee TA, Ludwig SM, Hoyle GW, Ruiz P, Wurst W et al.. The Hsp90 cochaperone p23 is essential for perinatal survival. Mol Cell Biol. 2006; 26(23):8976-83.
  • [48]Toyoshima I, Yu H, Steuer ER, Sheetz MP. Kinectin, a major kinesin-binding protein on ER. J Cell Biol. 1992; 118(5):1121-31.
  • [49]Goyal U, Blackstone C. Untangling the web: mechanisms underlying ER network formation. Biochim Biophys Acta. 2013; 1833(11):2492-8.
  • [50]Sheetz MP. Motor and cargo interactions. Eur J Biochem. 1999; 262(1):19-25.
  • [51]Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2013; 22(9):713-8.
  • [52]Gabriele ML, Ishikawa H, Schuman JS, Ling Y, Bilonick RA, Kim JS et al.. Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52(5):2250-4.
  • [53]Giani A, Thanos A, Roh MI, Connolly E, Trichonas G, Kim I et al.. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011; 52(6):3880-7.
  • [54]Alarcon-Martinez L, Aviles-Trigueros M, Galindo-Romero C, Valiente-Soriano J, Agudo-Barriuso M, Villa Pde L et al.. ERG changes in albino and pigmented mice after optic nerve transection. Vis Res. 2010; 50(21):2176-87.
  • [55]Yang C, Kaushal V, Haun RS, Seth R, Shah SV, Kaushal GP. Transcriptional activation of caspase-6 and −7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ. 2008; 15(3):530-44.
  • [56]Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci. 1995; 15(8):5851-7.
  • [57]Chatoo W, Abdouh M, Bernier G. p53 pro-oxidant activity in the central nervous system: implication in aging and neurodegenerative diseases. Antioxid Redox Signal. 2011; 15(6):1729-37.
  • [58]Wilson AM, Morquette B, Abdouh M, Unsain N, Barker PA, Feinstein E et al.. ASPP1/2 regulate p53-dependent death of retinal ganglion cells through PUMA and Fas/CD95 activation in vivo. J Neurosci. 2013; 33(5):2205-16.
  • [59]Tezel G, Yang X. Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci. 2004; 45(11):4049-59.
  • [60]Tezel G, Yang X, Yang J, Wax MB. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res. 2004; 996(2):202-12.
  • [61]Fernandes KA, Harder JM, Fornarola LB, Freeman RS, Clark AF, Pang IH et al.. JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiol Dis. 2012; 46(2):393-401.
  • [62]Nguyen SM, Alexejun CN, Levin LA. Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells. Antioxid Redox Signal. 2003; 5(5):629-34.
  文献评价指标  
  下载次数:25次 浏览次数:9次