期刊论文详细信息
Molecular Neurodegeneration
Identification of telomere dysfunction in Friedreich ataxia
Mark A. Pook3  Predrag Slijepcevic4  Paola Giunti1  Hemad Yasaei4  Chiranjeevi Sandi2  Sahar Al-Mahdawi3  Sara Anjomani Virmouni3 
[1] Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK;Current address: Uro-Oncology Research Group, Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge, UK;Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge, UK;Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
关键词: Telomere dysfunction;    ALT;    Alternative lengthening of telomeres;    Mouse model;    GAA repeat expansion;    FXN;    frataxin;    FRDA;    Friedreich ataxia;   
Others  :  1211843
DOI  :  10.1186/s13024-015-0019-6
 received in 2014-10-31, accepted in 2015-05-26,  发布年份 2015
PDF
【 摘 要 】

Background

Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker.

Results

Here we aimed to investigate both telomere structure and function in FRDA cells. Our results confirmed telomere shortening in FRDA patient leukocytes and identified similar telomere shortening in FRDA patient autopsy cerebellar tissues. However, FRDA fibroblasts showed significantly longer telomeres at early passage, occurring in the absence of telomerase activity, but with activation of an alternative lengthening of telomeres (ALT)-like mechanism. These cells also showed accelerated telomere shortening as population doubling increases. Furthermore, telomere dysfunction-induced foci (TIF) analysis revealed that FRDA fibroblasts have dysfunctional telomeres.

Conclusions

Our finding of dysfunctional telomeres in FRDA cells provides further insight into FRDA molecular disease mechanisms, which may have implications for future FRDA therapy.

【 授权许可】

   
2015 Anjomani Virmouni et al.

【 预 览 】
附件列表
Files Size Format View
20150611042542935.pdf 2960KB PDF download
Fig. 4. 57KB Image download
Fig. 3. 40KB Image download
Fig. 2. 60KB Image download
Fig. 1. 35KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Chamberlain S, Lewis PD. Studies of cellular hypersensitivity to ionising radiation in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 1982; 45:1136-8.
  • [2]Haugen AC, Di Prospero NA, Parker JS, Fannin RD, Chou J, Meyer JN et al.. Altered gene expression and DNA damage in peripheral blood cells from Friedreich’s ataxia patients: cellular model of pathology. PLoS Genet. 2010; 6:e1000812.
  • [3]Coppola G, Burnett R, Perlman S, Versano R, Gao F, Plasterer H et al.. A gene expression phenotype in lymphocytes from Friedreich ataxia patients. Ann Neurol. 2011; 70:790-804.
  • [4]von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27:339-44.
  • [5]Castaldo I, Vergara P, Pinelli M, Filla A, De Michele G, Cocozza S et al.. Can telomere shortening in human peripheral blood leukocytes serve as a disease biomarker of Friedreich’s ataxia? Antioxid Redox Signal. 2013; 18:1303-6.
  • [6]Blackburn EH. Telomere states and cell fates. Nature. 2000; 408:53-6.
  • [7]Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973; 41:181-90.
  • [8]Wellinger RJ, Ethier K, Labrecque P, Zakian VA. Evidence for a new step in telomere maintenance. Cell. 1996; 85:423-33.
  • [9]Conomos D, Pickett HA, Reddel RR. Alternative lengthening of telomeres: remodeling the telomere architecture. Front Oncol. 2013; 3:27.
  • [10]Chung I, Osterwald S, Deeg KI, Rippe K. PML body meets telomere: the beginning of an ALTernate ending? Nucleus. 2012; 3:263-75.
  • [11]d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T et al.. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003; 426:194-198.
  • [12]McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I et al.. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 2001; 61:912-5.
  • [13]Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al.. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997; 90:785-95.
  • [14]Lallemand-Breitenbach V, de The H. PML nuclear bodies. Cold Spring Harb Perspect Biol. 2010; 2:a000661.
  • [15]Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003; 13:1549-56.
  • [16]Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F et al.. The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet. 1999; 8:425-30.
  • [17]Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, de Lange T et al.. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012; 8:e1002772.
  • [18]Rizki A, Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature. 2001; 411:713-6.
  • [19]Schurks M, Buring J, Dushkes R, Gaziano JM, Zee RY, Kurth T. Telomere length and Parkinson’s disease in men: a nested case–control study. Eur J Neurol. 2014; 21:93-9.
  • [20]Panossian LA, Porter VR, Valenzuela HF, Zhu X, Reback E, Masterman D et al.. Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging. 2003; 24:77-84.
  • [21]van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998; 92:401-13.
  • [22]Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH et al.. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 2000; 14:2807-12.
  • [23]Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE et al.. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A. 1999; 96:14899-904.
  • [24]Gilley D, Tanaka H, Hande MP, Kurimasa A, Li GC, Oshimura M et al.. DNA-PKcs is critical for telomere capping. Proc Natl Acad Sci U S A. 2001; 98:15084-8.
  • [25]Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA. The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol. 2001; 21:3642-51.
  • [26]Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet. 2001; 2:446-57.
  • [27]Lansdorp PM. Repair of telomeric DNA prior to replicative senescence. Mech Ageing Dev. 2000; 118:23-34.
  • [28]Shen J, Loeb LA. Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev. 2001; 122:921-44.
  • [29]Thompson LH, Schild D. Recombinational DNA repair and human disease. Mutat Res. 2002; 509:49-78.
  • [30]Deng Z, Glousker G, Molczan A, Fox AJ, Lamm N, Dheekollu J et al.. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci U S A. 2013; 110:E3408-16.
  • [31]Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z, Ding H et al.. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science. 2013; 342:239-42.
  • [32]Gari K, Leon Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science. 2012; 337:243-5.
  • [33]Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M et al.. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006; 8:416-24.
  • [34]Benetti R, Garcia-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007; 39:243-50.
  • [35]Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007; 8:299-309.
  • [36]Guan JZ, Guan WP, Maeda T, Makino N. The Subtelomere of Short Telomeres is Hypermethylated in Alzheimer’s Disease. Aging Dis. 2012; 3:164-70.
  • [37]Maeda T, Guan JZ, Oyama J, Higuchi Y, Makino N. Aging-associated alteration of subtelomeric methylation in Parkinson’s disease. J Gerontol A Biol Sci Med Sci. 2009; 64:949-55.
  • [38]Guan JZ, Maeda T, Sugano M, Oyama J, Higuchi Y, Suzuki T et al.. A percentage analysis of the telomere length in Parkinson’s disease patients. J Gerontol A Biol Sci Med Sci. 2008; 63:467-73.
  • [39]Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001; 107:67-77.
  • [40]Cherif H, Tarry JL, Ozanne SE, Hales CN. Ageing and telomeres: a study into organ- and gender-specific telomere shortening. Nucleic Acids Res. 2003; 31:1576-83.
  • [41]Maeda T, Guan JZ, Oyama J, Higuchi Y, Makino N. Age-related changes in subtelomeric methylation in the normal Japanese population. J Gerontol A Biol Sci Med Sci. 2009; 64:426-34.
  • [42]Anjomani Virmouni S, Sandi C, Al-Mahdawi S, Pook MA. Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich ataxia. PLoS One. 2014; 9:e107416.
  • [43]Sandi C, Sandi M, Jassal H, Ezzatizadeh V, Anjomani-Virmouni S, Al-Mahdawi S et al.. Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models. PLoS One. 2014; 9:e89488.
  • [44]Cholewa D, Stiehl T, Schellenberg A, Bokermann G, Joussen S, Koch C et al.. Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant. 2011; 20:1409-22.
  • [45]Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009; 4:1798-806.
  • [46]O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011; 13:3-9222-13-3.
  • [47]Cabuy E, Newton C, Roberts T, Newbold R, Slijepcevic P. Identification of subpopulations of cells with differing telomere lengths in mouse and human cell lines by flow FISH. Cytometry A. 2004; 62:150-61.
  • [48]Bailey SM, Cornforth MN, Ullrich RL, Goodwin EH. Dysfunctional mammalian telomeres join with DNA double-strand breaks. DNA Repair (Amst). 2004; 3:349-57.
  • [49]Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al.. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434:917-21.
  • [50]Yasaei H, Slijepcevic P. Defective Artemis causes mild telomere dysfunction. Genome Integr. 2010; 1:3-9414-1-3. BioMed Central Full Text
  • [51]Ducrest AL, Amacker M, Mathieu YD, Cuthbert AP, Trott DA, Newbold RF et al.. Regulation of human telomerase activity: repression by normal chromosome 3 abolishes nuclear telomerase reverse transcriptase transcripts but does not affect c-Myc activity. Cancer Res. 2001; 61:7594-602.
  文献评价指标  
  下载次数:61次 浏览次数:15次