期刊论文详细信息
Virology Journal
Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats
Abdul Rahman Omar1  Mohd Hair Bejo1  Siti Suri Arshad1  Tan Sheau Wei4  Gayathri Thevi Selvarajah3  Choong Oi Kuan4  Mohammad Syamsul Reza Harun2 
[1] Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia;Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
关键词: Fold change;    Gene expression;    RT-qPCR;    Transcriptome;    PBMCs;    CRFK;    FIPV;   
Others  :  820304
DOI  :  10.1186/1743-422X-10-329
 received in 2013-06-17, accepted in 2013-11-03,  发布年份 2013
PDF
【 摘 要 】

Background

Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood.

Methods

RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79–1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic’s analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal’s Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.

Results

Based on Kal’s Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.

Conclusion

The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.

【 授权许可】

   
2013 Harun et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712035255338.pdf 416KB PDF download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Sharif S, Arshad SS, Hair-Bejo M, Omar AR, Zeenathul NA, Hafidz MA: Prevalence of feline coronavirus in two cat populations in Malaysia. J Feline Med Surg 2009, 12:1031-1034.
  • [2]Pedersen NC: A review of feline infectious peritonitis virus infection: 1963–2008. J Feline Med Surg 2009, 11:225-258.
  • [3]Hartmann K: Feline infectious peritonitis. Vet Clin North Am Small Anim Pract 2005, 35(1):39-79.
  • [4]Herrewegh AA, Vennema H, Horzinek MC, Rottier PJ, De Groot RJ: The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virol 1995, 212:622-631.
  • [5]Vennema H, Poland A, Foley J, Pedersen NC: Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virol 1998, 243:150-157.
  • [6]Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD, Duhamel GE, et al.: Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg Infect Dis 2013. http://dx.doi.org/10.3201/eid1907.121094/ webcite
  • [7]De Groot Mijnes JD, Van Dun JM, Van Der Most RG, De Groot RJ: Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol 2005, 79:1036-1044.
  • [8]Haagmans BL, Egberink HF, Horzinek MC: Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 1996, 70(12):8977-8983.
  • [9]Takano T, Hohdatsu T, Hashida Y, Kaneko Y, Tanabe M, Koyama H: A “possible” involvement of TNF-alpha in apoptosis induction in peripheral blood lymphocytes of cats with feline infectious peritonitis. Vet Microbiol 2007, 119(2–4):121-131.
  • [10]Assarsson E, Greenbaum JA, Sundström M, Schaffer L, Hammond JA, Pasquetto V, Oseroff C, Hendrickson RC, Lefkowitz EJ, Tscharke DC, Sidney J, Grey HM, Head SR, Peters B, Sette A: Kinetic analysis of a complete poxvirus transcriptome an immediate early class of gene. Proc Natl Acad Sci U S A 2008, 105(6):2140-2145.
  • [11]Nanda S, Havert MB, Calderón GM, Thomson M, Jacobson C, et al.: Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance. PLoS ONE 2008, 3(10):e3442. doi:10.1371/journal.pone.0003442
  • [12]Dowling RJ, Bienzle D: Gene-expression changes induced by Feline immunodeficiency virus infection differ in epithelial cells and lymphocytes. J Gen Virol 2005, 86(8):2239-2248.
  • [13]Ertl R, Birzele F, Hildebrandt T, Klein D: Viral transcriptome analysis of feline immunodeficiency virus infected cells using second generation sequencing technology. Vet Immunol Immunopathol 2011, 143(3–4):314-324.
  • [14]Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7:203-214.
  • [15]van Hamme E, Dewerchin HL, Cornelissen E, Nauwynck HJ: Attachment and internalization of feline infectious peritonitis virus in feline blood monocytes and Crandell feline kidney cells. J Gen Virol 2007, 88:2527-2532.
  • [16]Kal AJ, Van Zonneveld AJ, Benes V, Van Den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B, Ansorge W, Tabak HF: Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 1999, 10(6):1859-1872.
  • [17]Münk C, Beck T, Zielonka J, Hotz-Wagenblatt A, Chareza S, Battenberg M, Thielebein J, Cichutek K, Bravo IG, O’Brien SJ, Löchelt M, Yuhki N: Functions, structure, and read-through alternative splicing of feline APOBEC3 genes. Genome Biol 2008, 9(3):R48. BioMed Central Full Text
  • [18]Shen T, Chen X, Chen Y, Xu Q, Lu F, Liu S: Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 2010, 82(7):1152-1159.
  • [19]Li MM, Emerman M: Polymorphism in human APOBEC3H affects a phenotype dominant for subcellular localization and antiviral activity. J Virol 2011, 85(16):8197-8207.
  • [20]Zhen A, Du J, Zhou X, Xiong Y, Yu XF: Reduced APOBEC3H variant anti-viral activities are associated with altered RNA binding activities. PLoS ONE 2012, 7(7):e38771. doi:10.1371/journal.pone.0038771
  • [21]Folkl A, Wen X, Kuczynski E, Clark ME, Bienzle D: Feline programmed death and its ligand: characterization and changes with feline immunodeficiency virus infection. Vet Immunol Immunopathol 2010, 134(1–2):107-114.
  • [22]Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP: Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 2006, 12:1198-1202.
  • [23]Keir ME, Butte MJ, Freeman GJ, Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008, 2008(26):677-704.
  • [24]Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ: Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003, 170(3):1257-1266.
  • [25]Cousins RJ, Foster LL: Regulation of cysteine-rich intestinal protein, a zinc finger protein, by mediators of the immune response. J Infect Dis 2000, 182(1):S81-S84. doi:10.1086/315917
  • [26]Berg AL, Ekmanb K, Belákb S, Bergb M: Cellular composition and interferon-γ expression of the local inflammatory response in feline infectious peritonitis (FIP). Vet Microbiol 2005, 111(1–2):15-23.
  • [27]Dewerchin HL, Cornelissen E, Nauwynck HJ: Replication of feline coronaviruses in peripheral blood monocytes. Arch Virol 2005, 150:2483-2500.
  • [28]Khaiboullina SF, Rizvanov AA, Deyde VM, St Jeor SC: Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. J Med Virol 2005, 75(2):267-275.
  • [29]Hoenen A, Liu W, Kochs G, Khromykh AA, Mackenzie JM: West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. J Gen Virol 2007, 88(11):3013-3017.
  • [30]Jiang D, Weidner JM, Qing M, Pan XB, Guo H, Xu C, Zhang X, Birk A, Chang J, Shi PY, Block TM, Guo JT: Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J Virol 2010, 84(16):8332-8341.
  • [31]Helbig KJ, Lau DT, Semendric L, Harley HA, Beard MR: Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 2005, 42(3):702-710.
  • [32]Gong D, Benarafa C, Hartshorn KL, Remold-O’Donnell E: The neutrophil serine protease inhibitor SerpinB1 protects against inflammatory lung injury and morbidity in influenza virus infection. J Immunol 2009, 182(43):10.
  • [33]Benarafa C, LeCuyer TE, Baumann M, Stolley JM, Cremona TP, Remold-O’Donnell E: SerpinB1 protects the mature neutrophil reserve in the bone marrow. J Leukoc Biol 2011, 90(1):21-29.
  • [34]Basu S, Totty NF, Irwin MS, Sudol M, Downward J: Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 2003, 11(1):11-23.
  • [35]The UCSC felCat4 data from the Dec. 2008 catChrV17e draft assembly. http://genome.ucsc.edu/goldenPath/credits webcite. html#cat_credits
  • [36]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [37]Livak K, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [38]Penning LC, Vrieling HE, Brinkhof B, Riemers FM, Rothuizen J, Rutteman GR, Hazewinkel HA: A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet Immunol Immunopathol 2007, 120:212-222.
  • [39]Kessler Y, Helfer-Hungerbuehler AK, Cattori V, Meli ML, Zellweger B, Ossent P, Riond B, Reusch CE, Lutz H, Hofmann-Lehmann R: Quantitative TaqMan® real-time PCR assays for gene expression normalisation in feline tissues. BMC Mol Biol 2009, 10:106. doi:10.1186/1471-2199-10-106 BioMed Central Full Text
  文献评价指标  
  下载次数:15次 浏览次数:141次