期刊论文详细信息
Plant Methods
Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species
Chris Bowler1  Leïla Tirichine1  Xin Lin1 
[1] Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Génomique, Environnementale et Evolutive Section 3 CNRS UMR8197, 46 rue d’Ulm, Paris, 75005, France
关键词: Epigenomics;    Chromatin immunoprecipitation;    Histone modifications;    Thalassiosira pseudonana;    Phaeodactylum tricornutum;   
Others  :  821261
DOI  :  10.1186/1746-4811-8-48
 received in 2012-10-24, accepted in 2012-12-05,  发布年份 2012
PDF
【 摘 要 】

In this report we describe a chromatin immunoprecipitation (ChIP) protocol for two fully sequenced model diatom species Phaeodactylum tricornutum and Thalassiosira pseudonana. This protocol allows the extraction of satisfactory amounts of chromatin and gives reproducible results. We coupled the ChIP assay with real time quantitative PCR. Our results reveal that the two major histone marks H3K4me2 and H3K9me2 exist in P. tricornutum and T. pseudonana. As in other eukaryotes, H3K4me2 marks active genes whereas H3K9me2 marks transcriptionally inactive transposable elements. Unexpectedly however, T. pseudonana housekeeping genes also show a relative enrichment of H3K9me2. We also discuss optimization of the procedure, including growth conditions, cross linking and sonication. Validation of the protocol provides a set of genes and transposable elements that can be used as controls for studies using ChIP in each diatom species. This protocol can be easily adapted to other diatoms and eukaryotic phytoplankton species for genetic and biochemical studies.

【 授权许可】

   
2012 Lin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712071552415.pdf 763KB PDF download
Figure 5. 41KB Image download
Figure 4. 68KB Image download
Figure 3. 23KB Image download
Figure 2. 35KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Round FE, Crawford RM, Mann DG: The diatoms: biology and morphology of the genera. London, UK: Cambridge University Press; 1990.
  • [2]Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B: Production and dissolution of biogenic silica in the ocean – revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 1995, 9:359-372.
  • [3]Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, et al.: The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004, 306:79-86.
  • [4]Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, et al.: The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456:239-244.
  • [5]Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C: Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 2007, 406:23-35.
  • [6]De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A: Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009, 37:e96.
  • [7]Gendrel AV, Lippman Z, Martienssen R, Colot V: Profiling histone modification patterns in plants using genomic tiling microarrays. Nature methods 2005, 2:213-218.
  • [8]Grably M, Engelberg D: A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae. Methods mol biol 2010, 638:211-224.
  • [9]Saleh A, Alvarez-Venegas R, Avramova Z: An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 2008, 3:1018-1025.
  • [10]Nelson JD, Denisenko O, Bomsztyk K: Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 2006, 1:179-185.
  • [11]Kim BH, Ramanan R, Cho DH, Choi GG, La HJ, Ahn CY, Oh HM, Kim HS: Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One 2012, 7:e37770.
  • [12]Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ: Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS biol 2005, 3:e328.
  • [13]Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
  • [14]Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 2009, 10:R62. BioMed Central Full Text
  • [15]Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, Grandbastien MA, Bowler C: Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 2009, 10:624. BioMed Central Full Text
  • [16]Zhou J, Wang X, He K, Charron JB, Elling AA, Deng XW: Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 2010, 72:585-595.
  • [17]Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002, 16:1779-1791.
  • [18]Bapat SA, Jin V, Berry N, Balch C, Sharma N, Kurrey N, Zhang S, Fang F, Lan X, Li M, et al.: Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells. Epigenetics: off j DNA Methylation Soc 2010, 5:716-729.
  • [19]Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125:315-326.
  • [20]Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, et al.: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 2011, 30:1928-1938.
  • [21]Weishaupt H, Sigvardsson M, Attema JL: Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells. Blood 2010, 115:247-256.
  • [22]Riddle NC, Minoda A, Kharchenko PV, Alekseyenko AA, Schwartz YB, Tolstorukov MY, Gorchakov AA, Jaffe JD, Kennedy C, Linder-Basso D, et al.: Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 2011, 21:147-163.
  • [23]Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP: Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 2009, 41:246-250.
  • [24]Lanzuolo C, Lo Sardo F, Orlando V: Concerted epigenetic signatures inheritance at PcG targets through replication. Cell cycle 2012, 11:1300.
  文献评价指标  
  下载次数:46次 浏览次数:18次