期刊论文详细信息
Particle and Fibre Toxicology
Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli
Edmundo Carlos Grisard1  Alvaro José Romanha2  Mario Steindel1  Lais Eiko Yamanaka1  Jair Téllez1  Ibeth Romero1 
[1]Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-970, Brasil
[2]Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, MG, Brasil
关键词: Antioxidant defence;    Thiol metabolism;    T. rangeli;    Cysteine synthase;    Cystathionine β-synthase;    Cysteine biosynthesis;   
Others  :  807094
DOI  :  10.1186/1756-3305-7-197
 received in 2013-12-19, accepted in 2014-04-15,  发布年份 2014
PDF
【 摘 要 】

Background

Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH]2) that plays a central role in maintaining intracellular redox homeostasis and providing defence against oxidative stress.

Methods

We cloned and characterised genes coding for a cystathionine β-synthase (CβS) and cysteine synthase (CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan parasite Trypanosoma rangeli.

Results

Our results show that T. rangeli CβS (TrCβS), similar to its homologs in T. cruzi, contains the catalytic domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS lacks two of the four lysine residues (Lys26 and Lys184) required for activity. Enzymatic studies using T. rangeli extracts confirmed the absence of CS activity but confirmed the expression of an active CβS. Moreover, CβS biochemical assays revealed that the T. rangeli CβS enzyme also has serine sulfhydrylase activity.

Conclusion

These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an important functional role during the insect stage of the life cycle of this protozoan parasite.

【 授权许可】

   
2014 Romero et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708103212347.pdf 2516KB PDF download
Figure 5. 49KB Image download
Figure 4. 53KB Image download
Figure 3. 40KB Image download
Figure 2. 202KB Image download
Figure 1. 242KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Nozaki T, Ali V, Tokoro M: Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 2005, 60:1-99.
  • [2]Krauth-Siegel RL, Leroux AE: Low-molecular-mass antioxidants in parasites. Antioxid Redox Signal 2012, 17(4):583-607.
  • [3]Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA: Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiol Lett 2009, 292(1):27-32.
  • [4]Beinert H, Holm RH, Münck E: Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 1997, 277(5326):653-659.
  • [5]Thomas D, Surdin-Kerjan Y: Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1997, 61(4):503-532.
  • [6]Aitken SM, Kirsch JF: The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. Arch Biochem Biophys 2005, 433(1):166-175.
  • [7]Feldman-Salit A, Wirtz M, Hell R, Wade RC: A mechanistic model of the cysteine synthase complex. J Mol Biol 2009, 386(1):37-59.
  • [8]Nozaki T, Asai T, Sanchez LB, Kobayashi S, Nakazawa M, Takeuchi T: Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba. J Biol Chem 1999, 274(45):32445-32452.
  • [9]Williams RA, Westrop GD, Coombs GH: Two pathways for cysteine biosynthesis in Leishmania major. Biochem J 2009, 420(3):451-462.
  • [10]Raj I, Kumar S, Gourinath S: The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallogr D Biol Crystallogr 2012, 68(Pt 8):909-919.
  • [11]Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, et al.: The sequence of the human genome. Science 2001, 291(5507):1304-1351.
  • [12]Wirtz M, Berkowitz O, Droux M, Hell R: The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction. Eur J Biochem 2001, 268(3):686-693.
  • [13]Thomson L, Denicola A, Radi R: The trypanothione-thiol system in Trypanosoma cruzi as a key antioxidant mechanism against peroxynitrite-mediated cytotoxicity. Arch Biochem Biophys 2003, 412(1):55-64.
  • [14]Piacenza L, Zago MP, Peluffo G, Alvarez MN, Basombrio MA, Radi R: Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int J Parasitol 2009, 39(13):1455-1464.
  • [15]D’Alessandro A, Saraiva N: Trypanosoma rangeli. In Parasitic Protozoa. Volume 2. 2nd edition. Edited by Kreirer JP BJ. San Diego: Academic Press; 1992::1-54.
  • [16]Camargo EP: Growth and differentiation in Trypanosoma cruzi I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 1964, 6:93-100.
  • [17]Koerich LB, Emmanuelle-Machado P, Santos K, Grisard EC, Steindel M: Differentiation of Trypanosoma rangeli: high production of infective Trypomastigote forms in vitro. Parasitol Res 2002, 88(1):21-25.
  • [18]Pinto AM, Sales PC, Camargos ER, Silva AM: Tumour necrosis factor (TNF)-mediated NF-κB activation facilitates cellular invasion of non-professional phagocytic epithelial cell lines by Trypanosoma cruzi. Cell Microbiol 2011, 13:1518-1529.
  • [19]Grisard EC, Stoco PH, Wagner G, Sincero TC, Rotava G, Rodrigues JB, Snoeijer CQ, Koerich LB, Sperandio MM, Bayer-Santos E, Fragoso SP, Goldenberg S, Triana O, Vallejo GA, Tyler KM, Dávila AM, Steindel M: Transcriptomic analyses of the avirulent protozoan parasite Trypanosoma rangeli. Mol Biochem Parasitol 2010, 174(1):18-25.
  • [20]Sambrook J, Russell DW: Molecular Cloning : a Laboratory Manual. 3rd edition. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001.
  • [21]Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8(3):175-185.
  • [22]Decuypere S, Vanaerschot M, Brunker K, Imamura H, Müller S, Khanal B, Rijal S, Dujardin JC, Coombs GH: Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl Trop Dis 2012, 6(2):e1514.
  • [23]Gallagher S, Winston SE, Fuller SA, Hurrell JG: Immunoblotting and immunodetection. Curr Protoc Mol Biol 2008., Chapter 10Unit 10.18: 10.8.1-10.8.28.
  • [24]Walker J, Barrett J: Cystathionine beta-synthase and gamma-cystathionase in helminths. Parasitol Res 1991, 77(8):709-713.
  • [25]Kashiwamata S, Greenberg DM: Studies on cystathionine synthase of rat liver. Properties of the highly purified enzyme. Biochim Biophys Acta 1970, 212(3):488-500.
  • [26]Gaitonde MK: A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 1967, 104(2):627-633.
  • [27]Droux M, Martin J, Sajus P, Douce R: Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts. Arch Biochem Biophys 1992, 295(2):379-390.
  • [28]Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, Rosen BP: Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci U S A 1996, 93(19):10383-10387.
  • [29]Ellman GL: Tissue sulfhydryl groups. Arch Biochem Biophys 1959, 82(1):70-77.
  • [30]Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R: The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 1997, 68(2):139-147.
  • [31]Kelly JM, Taylor MC, Smith K, Hunter KJ, Fairlamb AH: Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase. Sensitivity towards agents that are thought to induce oxidative stress. Eur J Biochem 1993, 218(1):29-37.
  • [32]Taoka S, Widjaja L, Banerjee R: Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine beta-synthase. Biochemistry 1999, 38(40):13155-13161.
  • [33]Nozaki T, Shigeta Y, Saito-Nakano Y, Imada M, Kruger WD: Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma. J Biol Chem 2001, 276(9):6516-6523.
  • [34]Marciano D, Santana M, Nowicki C: Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi. Mol Biochem Parasitol 2012, 185(2):114-120.
  • [35]Yarlett N, Bacchi CJ: Effect of DL-alpha-difluoromethylornithine on methionine cycle intermediates in Trypanosoma brucei brucei. Mol Biochem Parasitol 1988, 27(1):1-10.
  • [36]Duszenko M, Ferguson MA, Lamont GS, Rifkin MR, Cross GA: Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro. J Exp Med 1985, 162(4):1256-1263.
  • [37]Azambuja P, Ratcliffe NA, Garcia ES: Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. An Acad Bras Cienc 2005, 77(3):397-404.
  • [38]Whitten MM, Mello CB, Gomes SA, Nigam Y, Azambuja P, Garcia ES, Ratcliffe NA: Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Exp Parasitol 2001, 98(1):44-57.
  • [39]Whitten M, Sun F, Tew I, Schaub G, Soukou C, Nappi A, Ratcliffe N: Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect Biochem Mol Biol 2007, 37(5):440-452.
  • [40]Garcia ES, Castro DP, Figueiredo MB, Genta FA, Azambuja P: Trypanosoma rangeli: a new perspective for studying the modulation of immune reactions of Rhodnius prolixus. Parasit Vectors 2009, 2(1):33.
  • [41]Gazos-Lopes F, Mesquita RD, Silva-Cardoso L, Senna R, Silveira AB, Jablonka W, Cudischevitch CO, Carneiro AB, Machado EA, Lima LG, Monteiro RQ, Nussenzveig RH, Folly E, Romeiro A, Vanbeselaere J, Mendonça-Previato L, Previato JO, Valenzuela JG, Ribeiro JM, Atella GC, Silva-Neto MA: Glycoinositolphospholipids from Trypanosomatids subvert nitric oxide production in Rhodnius prolixus salivary glands. PLoS One 2012, 7(10):e47285.
  • [42]Garcia ES, Castro DP, Figueiredo MB, Azambuja P: Parasite-mediated interactions within the insect vector: trypanosoma rangeli strategies. Parasit Vectors 2012, 5:105.
  • [43]Krauth-Siegel RL, Comini MA: Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 2008, 1780(11):1236-1248.
  文献评价指标  
  下载次数:12次 浏览次数:21次