期刊论文详细信息
Movement Ecology
Detecting changes in the annual movements of terrestrial migratory species: using the first-passage time to document the spring migration of caribou
Steeve D Côté1  Christian Dussault2  Mael Le Corre1 
[1] Caribou Ungava, Département de Biologie and Centre d’Études Nordiques, Université Laval, Québec G1V 0A6, Québec, Canada;Direction de la faune terrestre et de l’avifaune, Ministère des Forêts, de la Faune et des Parcs du Québec, 880, chemin Sainte-Foy, Québec G1S 4X4, Québec, Canada
关键词: Movements;    Signal segmentation process;    First-Passage Time;    Migration;    Migratory caribou;   
Others  :  1171079
DOI  :  10.1186/s40462-014-0019-0
 received in 2014-04-14, accepted in 2014-07-29,  发布年份 2014
PDF
【 摘 要 】

Background

Migratory species face numerous threats related to human encroachment and climate change. Several migratory populations are declining and individuals are losing their migratory behaviour. To understand how habitat loss or changes in the phenology of natural processes affect migrations, it is crucial to clearly identify the timing and the patterns of migration. We propose an objective method, based on the detection of changes in movement patterns, to identify departure and arrival dates of the migration. We tested the efficiency of our approach using simulated paths before applying it to spring migration of migratory caribou from the Rivière-George and Rivière-aux-Feuilles herds in northern Québec and Labrador. We applied the First-Passage Time analysis (FPT) to locations of 402 females collected between 1986 and 2012 to characterize their movements throughout the year. We then applied a signal segmentation process in order to segment the path of FPT values into homogeneous bouts to discriminate migration from seasonal range use. This segmentation process was used to detect the winter break and the calving ground use because spring migration is defined by the departure from the winter range and the arrival on the calving ground.

Results

Segmentation of the simulated paths was successful in 96% of the cases, and had a high precision (96.4% of the locations assigned to the appropriate segment). Among the 813 winter breaks and 669 calving ground use expected to be detected on the FPT profiles, and assuming that individuals always reduced movements for each of the two periods, we detected 100% of the expected winter breaks and 89% of the expected calving ground use, and identified 648 complete spring migrations. Failures to segment winter breaks or calving ground use were related to individuals only slowing down or performing less pronounced pauses resulting in low mean FPT.

Conclusion

We show that our approach, which relies only on the analysis of movement patterns, provides a suitable and easy-to-use tool to study species exhibiting variations in their migration patterns and seasonal range use.

【 授权许可】

   
2014 Le Corre et al.; licensee BioMed Central

【 预 览 】
附件列表
Files Size Format View
20150418084806777.pdf 1082KB PDF download
Figure 4. 17KB Image download
Figure 3. 78KB Image download
Figure 2. 66KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bischof R, Loe LE, Meisingset EL, Zimmermann B, van Moorter B, Mysterud A: A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am Nat 2012, 180:407-424.
  • [2]Fryxell JM, Sinclair ARE: Causes and consequences of migration by large herbivores. Trends Ecol Evol 1988, 3:237-241.
  • [3]Hebblewhite M, Merrill EH: Multiscale wolf predation risk for elk: Does migration reduce risk? Oecologia 2007, 152:377-387.
  • [4]McKinnon L, Smith PA, Nol E, Martin JL, Doyle FI, Abraham KF, Gilchrist HG, Morrison RIG, Bêty J: Lower predation risk for migratory birds at high latitudes. Science 2010, 327:326-327.
  • [5]Bunnefeld N, Börger L, van Moorter B, Rolandsen CM, Dettki H, Solberg EJ, Ericsson G: A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J Anim Ecol 2011, 80:466-476.
  • [6]Sawyer H, Kauffman MJ, Nielson RM, Horne JS: Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol Appl 2009, 19:2016-2025.
  • [7]Stanley CQ, MacPherson M, Fraser KC, McKinnon EA, Stutchbury BJM: Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS One 2012, 7:e40688.
  • [8]Takii A, Izumiyama S, Taguchi M: Partial migration and effects of climate on migratory movements of sika deer in Kirigamine Highland, central Japan. Mammal Study 2012, 37:331-340.
  • [9]Robinson RA, Crick HQP, Learmonth JA, Maclean IMD, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ, Harwood J, Hays GC, Huntley B, Hutson AM, Pierce GJ, Rehfisch MM, Sims DW, Santos MB, Sparks TH, Stroud DA, Visser ME: Travelling through a warming world: Climate change and migratory species. Endang Species Res 2009, 7:87-99.
  • [10]Parmesan C, Yohe G: A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421:37-42.
  • [11]Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB: Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. P Roy Soc B-Biol Sci 2010, 277:1259-1266.
  • [12]Post E, Forchhammer MC: Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos T R Soc B 2008, 363:2369-2375.
  • [13]Mahoney SP, Schaefer JA: Hydroelectric development and the disruption of migration in caribou. Biol Cons 2002, 107:147-153.
  • [14]Mitchell GW, Newman AEM, Wikelski M, Norris DR: Timing of breeding carries over to influence migratory departure in a songbird: an automated radiotracking study. J Anim Ecol 2012, 81:1024-1033.
  • [15]Taillon J, Festa-Bianchet M, Côté SD: Shifting targets in the tundra: Protection of migratory caribou calving grounds must account for spatial changes over time. Biol Conserv 2012, 147:163-173.
  • [16]Schaefer JA, Bergman CM, Luttich SN: Site fidelity of female caribou at multiple spatial scales. Landscape Ecol 2000, 15:731-739.
  • [17]Couturier S, Côté SD, Otto RD, Weladji RB, Huot J: Variation in calf body mass in migratory caribou: The role of habitat, climate, and movements. J Mammal 2009, 90:442-452.
  • [18]Schmelzer I, Otto R: Winter range drift in the George River Caribou Herd: A response to summer forage limitation? Rangifer Spec Issue 2003, 14:113-122.
  • [19]Gunn A, Poole KG, Wierzchowski J: A Geostatistical Analysis for the Patterns of Caribou Occupancy on the Bathurst Calving Grounds 1966–2007. Indian and Northern Affairs Canada, Yellowknife; 2008.
  • [20]Singh NJ, Börger L, Dettki H, Bunnefeld N, Ericsson G: From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol Appl 2012, 22:2007-2020.
  • [21]Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, Halpin PN, Joppa LN, McClellan CM, Clark JS: Understanding movement data and movement processes: current and emerging directions. Ecol Lett 2008, 11:1338-1350.
  • [22]Fauchald P, Tveraa T: Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 2003, 84:282-288.
  • [23]Frair JL, Merrill EH, Visscher DR, Fortin D, Beyer HL, Morales JM: Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landscape Ecol 2005, 20:273-287.
  • [24]Pinaud D, Weimerskirch H: At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. J Anim Ecol 2007, 76:9-19.
  • [25]Kareiva P, Odell G: Swarms of predators exhibit preytaxis if individual predators use area-restricted search. Am Nat 1987, 130:233-270.
  • [26]Bailleul F, Lesage V, Power M, Doidge D, Hammill M: Migration phenology of beluga whales in a changing Arctic. Clim Res 2012, 53:169-178.
  • [27]Barraquand F, Benhamou S: Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 2008, 89:3336-3348.
  • [28]Lavielle M: Using penalized contrasts for the change-point problem. Signal Process 2005, 85:1501-1510.
  • [29]Boone RB, Thirgood SJ, Hopcraft JGC: Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 2006, 87:1987-1994.
  • [30]Singh NJ, Milner-Gulland EJ: Conserving a moving target: Planning protection for a migratory species as its distribution changes. J Appl Ecol 2011, 48:35-46.
  • [31]Couturier S, Otto RD, Côté SD, Luther G, Mahoney SP: Body size variations in caribou ecotypes and relationships with demography. J Wildlife Manage 2010, 74:395-404.
  • [32]Bolger DT, Newmark WD, Morrison TA, Doak DF: The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 2008, 11:63-77.
  • [33]Bailey H, Thompson P: Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. J Anim Ecol 2006, 75:456-465.
  • [34]Le Corre M, Pellerin M, Pinaud D, van Laere G, Fritz H, Saïd S: A multi-patch use of the habitat: Testing the First-Passage Time analysis on roe deer Capreolus capreolus paths. Wildlife Biol 2008, 14:339-349.
  • [35]Freitas C, Kovacs KM, Lydersen C, Ims RA: A novel method for quantifying habitat selection and predicting habitat use. J Appl Ecol 2008, 45:1213-1220.
  • [36]Fauchald P, Tveraa T: Hierarchical patch dynamics and animal movement pattern. Oecologia 2006, 149:383-395.
  • [37]Couturier S, Côté SD, Huot J, Otto RD: Body-condition dynamics in a northern ungulate gaining fat in winter. Can J Zool 2009, 87:367-378.
  • [38]Cristol DA, Baker MB, Carbone C: Differential migration revisited: Latitudinal segregation by age and sex class. Curr Ornithol 1999, 15:33-87.
  • [39]Holdo RM, Holt RD, Fryxell JM: Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the serengeti. Am Nat 2009, 173:431-445.
  • [40]Couturier S, Jean D, Otto RD, Rivard S: Demography of the Migratory Tundra Caribou (Rangifer tarandus) of the Nord-du-Québec region and Labrador. Ministère des Ressources Naturelles, de la Faune et des Parcs, Québec; 2004.
  • [41]McNeil P, Russel DE, Griffith B, Gunn A, Kofinas GP: Where the wild things are: Seasonal variation in caribou distribution in relation to climate change. Rangifer Spec Issue 2005, 16:51-63.
  • [42]Fancy SG, Pank LF, Whitten KR, Regelin WL: Seasonal movements of caribou in Arctic Alaska as determined by satellite. Can J Zool 1989, 67:644-650.
  • [43]Poole KG, Cuyler C, Nymand J: Evaluation of caribou Rangifer tarandus groenlandicus survey methodology in West Greenland. Wildlife Biol 2013, 19:225-239.
  • [44]Bekenov AB, Grachev IA, Milner-Gulland EJ: The ecology and management of the Saiga antelope in Kazakhstan. Mammal Rev 1998, 28:1-52.
  • [45]Morrison TA, Bolger DT: Wet season range fidelity in a tropical migratory ungulate. J Anim Ecol 2012, 81:543-552.
  • [46]Mueller T, Fagan WF: Search and navigation in dynamic environments - from individual behaviors to population distributions. Oikos 2008, 117:654-664.
  • [47]Olson KA, Fuller TK, Mueller T, Murray MG, Nicolson C, Odonkhuu D, Bolortsetseg S, Schaller GB: Annual movements of Mongolian gazelles: Nomads in the Eastern Steppe. J Arid Environ 2010, 74:1435-1442.
  • [48]Åkesson S, Hedenström A: How migrants get there: Migratory performance and orientation. Bio Science 2007, 5:123-133.
  • [49]Sawyer H, Kauffman MJ: Stopover ecology of a migratory ungulate. J Anim Ecol 2011, 80:1078-1087.
  • [50]Berger J: The last mile: How to sustain long-distance migration in mammals. Conserv Biol 2004, 18:320-331.
  • [51]Harris G, Thirgood S, Hopcraft G, Cromsigt J, Berger J: Global decline in aggregated migrations of large terrestrial mammals. Endang Species Res 2009, 7:55-76.
  • [52]Wilcove DS, Wikelski M: Going, going, gone: is animal migration disappearing? PLoS Biol 2008, 6:1361-1364.
  • [53]Boulet M, Couturier S, Côté SD, Otto RD, Bernatchez L: Integrative use of spatial, genetic, and demographic analyses for investigating genetic connectivity between migratory, montane, and sedentary caribou herds. Mol Ecol 2007, 16:4223-4240.
  • [54]Rasiulis A: Survie et Dynamique de Population des Caribous Migrateurs du Québec-Labrador. Laval University, Département de biologie; 2014.
  • [55]Le Hénaff D: Inventaire Aérien des Terrains de Vêlage du Caribou Dans la Région Nord et au Nord du Territoire de la Municipalité de la Baie James (mai–juin 1975). Service de la recherche biologique, Ministère du Tourisme, de la Chasse et de la Pêche, Québec; 1976.
  • [56]Bookhout TA: Research and Management Techniques for Wildlife and Habitats. The Wildlife Society, Maryland; 1996.
  • [57]Austin D, McMillan JI, Bowen WD: A three-stage algorithm for filtering erroneous Argos satellite locations. Mar Mammal Sci 2003, 19:371-383.
  • [58]R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.
  • [59]Picard F, Robin S, Lebarbier E, Daudin JJ: A Segmentation/Clustering model for the analysis of array CGH data. Biometrics 2007, 63:758-766.
  • [60]Douglas B, Maechler M, Bolker B, Walker S: lme4: Linear Mixed-Effects Models using Eigen and S4. [http://cran.R-project.org/package=lme4] webciteR package version 1.1-6 2014. http://cran.R-project.org/package=lme4
  文献评价指标  
  下载次数:5次 浏览次数:3次