期刊论文详细信息
Neural Development
Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells
Uwe Ernsberger1  Hermann Rohrer1  Klaus Unsicker2  Katrin Huber2  Priyanka Narasimhan2  Jutta Stubbusch1 
[1] Max Planck Institute for Brain Research, Deutschordenstrasse 46 D-60528, Frankfurt, Germany;Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstrasse 17, D-79104, Freiburg, Germany
关键词: Dicer 1;    Neurofilament;    Synaptotagmin;    Pan-neuronal;    Synaptic protein;    Sympathoadrenal;   
Others  :  804382
DOI  :  10.1186/1749-8104-8-16
 received in 2013-04-19, accepted in 2013-07-19,  发布年份 2013
PDF
【 摘 要 】

Background

Neurons in sympathetic ganglia and neuroendocrine cells in the adrenal medulla share not only their embryonic origin from sympathoadrenal precursors in the neural crest but also a range of functional features. These include the capacity for noradrenaline biosynthesis, vesicular storage and regulated release. Yet the regulation of neuronal properties in early neuroendocrine differentiation is a matter of debate and the developmental expression of the vesicle fusion machinery, which includes components found in both neurons and neuroendocrine cells, is not resolved.

Results

Analysis of synaptic protein and pan-neuronal marker mRNA expression during mouse development uncovers profound differences between sympathetic neurons and adrenal chromaffin cells, which result in qualitatively similar but quantitatively divergent transcript profiles. In sympathetic neurons embryonic upregulation of synaptic protein mRNA follows early and persistent induction of pan-neuronal marker transcripts. In adrenal chromaffin cells pan-neuronal marker expression occurs only transiently and synaptic protein messages remain at distinctly low levels throughout embryogenesis. Embryonic induction of synaptotagmin I (Syt1) in sympathetic ganglia and postnatal upregulation of synaptotagmin VII (Syt7) in adrenal medulla results in a cell type-specific difference in isoform prevalence. Dicer 1 inactivation in catecholaminergic cells reduces high neuronal synaptic protein mRNA levels but not their neuroendocrine low level expression. Pan-neuronal marker mRNAs are induced in chromaffin cells to yield a more neuron-like transcript pattern, while ultrastructure is not altered.

Conclusions

Our study demonstrates that remarkably different gene regulatory programs govern the expression of synaptic proteins in the neuronal and neuroendocrine branch of the sympathoadrenal system. They result in overlapping but quantitatively divergent transcript profiles. Dicer 1-dependent regulation is required to establish high neuronal mRNA levels for synaptic proteins and to maintain repression of neurofilament messages in neuroendocrine cells.

【 授权许可】

   
2013 Stubbusch et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708060915390.pdf 2013KB PDF download
Figure 8. 189KB Image download
Figure 7. 64KB Image download
Figure 6. 219KB Image download
Figure 5. 100KB Image download
Figure 4. 146KB Image download
Figure 3. 62KB Image download
Figure 2. 137KB Image download
Figure 1. 179KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Pang ZP, Südhof TC: Cell biology of Ca2 + −triggered exocytosis. Curr Opin Cell Biol 2010, 22(4):496-505.
  • [2]Lang T, Jahn R: Core proteins of the secretory machinery. Handb Exp Pharmacol 2008, 184:107-127.
  • [3]Huber K: The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 2006, 298(2):335-343.
  • [4]Patterson PH: Control of cell fate in a vertebrate neurogenic lineage. Cell 1990, 62(6):1035-1038.
  • [5]Anderson DJ: Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 1993, 16:129-158.
  • [6]Unsicker K, Finotto S, Krieglstein K: Generation of cell diversity in the peripheral autonomic nervous system: the sympathoadrenal cell lineage revisited. Ann Anat 1997, 179(6):495-500.
  • [7]Unsicker K, Huber K, Schober A, Kalcheim C: Resolved and open issues in chromaffin cell development. Mech Dev 2013, 130(6–8):324-329.
  • [8]Langley K, Grant NJ: Molecular markers of sympathoadrenal cells. Cell Tissue Res 1999, 298(2):185-206.
  • [9]Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K: Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 2013, 8:12. BioMed Central Full Text
  • [10]Ernsberger U, Esposito L, Partimo S, Huber K, Franke A, Bixby JL, Kalcheim C, Unsicker K: Expression of neuronal markers suggests heterogeneity of chick sympathoadrenal cells prior to invasion of the adrenal anlagen. Cell Tissue Res 2005, 319(1):1-13.
  • [11]Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H: Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 1996, 122(7):2079-2088.
  • [12]Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H: Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 1999, 24(4):861-870.
  • [13]Shah NM, Groves AK, Anderson DJ: Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996, 85(3):331-343.
  • [14]Patzke H, Ernsberger U: Expression of neurexin Ialpha splice variants in sympathetic neurons: selective changes during differentiation and in response to neurotrophins. Mol Cell Neurosci 2000, 15(6):561-572.
  • [15]Ernsberger U: Regulation of gene expression during early neuronal differentiation: evidence for patterns conserved across neuron populations and vertebrate classes. Cell Tissue Res 2012, 348(1):1-27.
  • [16]Anderson DJ, Axel R: Molecular probes for the development and plasticity of neural crest derivatives. Cell 1985, 42(2):649-662.
  • [17]Huber K, Brühl B, Guillemot F, Olson EN, Ernsberger U, Unsicker K: Development of chromaffin cells depends on MASH1 function. Development 2002, 129(20):4729-4738.
  • [18]Unsicker K: Fine structure and innervation of the avian adrenal gland. I. Fine structure of adrenal chromaffin cells and ganglion cells. Z Zellforsch Mikrosk Anat 1973, 145(3):389-416.
  • [19]Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC: Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 1994, 79(4):717-727.
  • [20]Voets T, Moser T, Lund PE, Chow RH, Geppert M, Südhof TC, Neher E: Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci U S A 2001, 98(20):11680-11685.
  • [21]Schonn JS, Maximov A, Lao Y, Südhof TC, Sørensen JB: Synaptotagmin-1 and −7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 2008, 105(10):3998-4003.
  • [22]Maximov A, Lao Y, Li H, Chen X, Rizo J, Sørensen JB, Südhof TC: Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proc Natl Acad Sci U S A 2008, 105(10):3986-3991.
  • [23]Rohrer H: Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 2011, 34(10):1563-1573.
  • [24]Howard MJ: Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 2005, 277(2):271-286.
  • [25]Hobert O: Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates. Cold Spring Harb Symp Quant Biol 2006, 71:181-188.
  • [26]Gao FB: Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 2010, 5:25. BioMed Central Full Text
  • [27]Li X, Jin P: Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 2010, 11(5):329-338.
  • [28]Fiore R, Khudayberdiev S, Saba R, Schratt G: MicroRNA function in the nervous system. Prog Mol Biol Transl Sci 2011, 102:47-100.
  • [29]Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476(7359):228-231.
  • [30]Zehir A, Hua LL, Maska EL, Morikawa Y, Cserjesi P: Dicer is required for survival of differentiating neural crest cells. Dev Biol 2010, 340(2):459-467.
  • [31]Huang T, Liu Y, Huang M, Zhao X, Cheng L: Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2010, 2(3):152-163.
  • [32]Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Benditó G, Molnár Z, Becher MW, Valenzuela CF, Partridge LD, Wilson MC: Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002, 5(1):19-26.
  • [33]Sørensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E: Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 2003, 114(1):75-86.
  • [34]Liu R, Hannenhalli S, Bucan M: Motifs and cis-regulatory modules mediating the expression of genes co-expressed in presynaptic neurons. Genome Biol 2009, 10(7):R72. BioMed Central Full Text
  • [35]Hou XE, Dahlström A: Synaptic vesicle proteins in cells of the sympathoadrenal lineage. J Auton Nerv Syst 1996, 61(3):301-312.
  • [36]Marquèze B, Boudier JA, Mizuta M, Inagaki N, Seino S, Seagar M: Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat. J Neurosci 1995, 15(7 Pt 1):4906-4917.
  • [37]Hamer DW, Santer RM: Anatomy and blood supply of the coeliac-superior mesenteric ganglion complex of the rat. Anat Embryol (Berl) 1981, 162(3):353-362.
  • [38]Gut P, Huber K, Lohr J, Brühl B, Oberle S, Treier M, Ernsberger U, Kalcheim C, Unsicker K: Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development 2005, 132(20):4611-4619.
  • [39]Schonn JS, van Weering JR, Mohrmann R, Schlüter OM, Südhof TC, de Wit H, Verhage M, Sørensen JB: Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells. Traffic 2010, 11(11):1415-1428.
  • [40]Gibbins IL, Morris JL: Structure of peripheral synapses: autonomic ganglia. Cell Tissue Res 2006, 326(2):205-220.
  • [41]Huber K, Karch N, Ernsberger U, Goridis C, Unsicker K: The role of Phox2B in chromaffin cell development. Dev Biol 2005, 279(2):501-508.
  • [42]Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Brühl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schütz G, Unsicker K: Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 1999, 126(13):2935-2944.
  • [43]Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF: The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999, 399(6734):366-370.
  • [44]Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD: Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 2008, 452(7188):759-763.
  • [45]Fagan AM, Zhang H, Landis S, Smeyne RJ, Silos-Santiago I, Barbacid M: TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci 1996, 16(19):6208-6218.
  • [46]Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L, Landis S: NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 1999, 210(2):411-427.
  • [47]Glebova NO, Ginty DD: Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 2004, 24(3):743-751.
  • [48]Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD: A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 2004, 118(2):243-255.
  • [49]Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, Lee JK, Matsumura K, Tomita Y, Miyoshi S, Shimoda K, Makino S, Sano M, Kodama I, Ogawa S, Fukuda K: Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 2007, 13(5):604-612.
  • [50]Stanke M, Duong CV, Pape M, Geissen M, Burbach G, Deller T, Gascan H, Otto C, Parlato R, Schütz G, Rohrer H: Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 2006, 133(1):141-150. A published erratum appears in Development 2006, 133(2):383. Otto, Christiane [added]
  • [51]Tsarovina K, Reiff T, Stubbusch J, Kurek D, Grosveld FG, Parlato R, Schütz G, Rohrer H: The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 2010, 30(32):10833-10843.
  • [52]Parlato R, Otto C, Begus Y, Stotz S, Schütz G: Specific ablation of the transcription factor CREB in sympathetic neurons surprisingly protects against developmentally regulated apoptosis. Development 2007, 134(9):1663-1670.
  • [53]Xi D, Chin H, Gainer H: Analysis of synaptotagmin I-IV messenger RNA expression and developmental regulation in the rat hypothalamus and pituitary. Neuroscience 1999, 88(2):425-435.
  • [54]Ernsberger U: Evidence for an evolutionary conserved role of bone morphogenetic protein growth factors and phox2 transcription factors during noradrenergic differentiation of sympathetic neurons. Induction of a putative synexpression group of neurotransmitter-synthesizing enzymes. Eur J Biochem 2000, 267(24):6976-6981.
  • [55]Patzke H, Reissmann E, Stanke M, Bixby JL, Ernsberger U: BMP growth factors and Phox2 transcription factors can induce synaptotagmin I and neurexin I during sympathetic neuron development. Mech Dev 2001, 108(1–2):149-159.
  • [56]Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H: The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 1999, 126(18):4087-4094.
  • [57]Coppola E, D’Autréaux F, Rijli FM, Brunet JF: Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 2010, 137(24):4211-4220.
  • [58]Hepp R, Grant NJ, Aunis D, Langley K: SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs. J Comp Neurol 2000, 421(4):533-542.
  • [59]Yang N, Ng YH, Pang ZP, Südhof TC, Wernig M: Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 2011, 9(6):517-525.
  • [60]Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ: The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 2005, 102(31):10898-10903.
  • [61]Theiler : The House Mouse: Atlas of Mouse Development. New York: Springer; 1989.
  • [62]Ernsberger U, Patzke H, Rohrer H: The developmental expression of choline acetyltransferase (ChAT) and the neuropeptide VIP in chick sympathetic neurons: evidence for different regulatory events in cholinergic differentiation. Mech Dev 1997, 68(1–2):115-126.
  文献评价指标  
  下载次数:12次 浏览次数:7次