期刊论文详细信息
Retrovirology
Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon – derived family during mouse placentogenesis
Reiner Strick2  Matthias W Beckmann2  Florian Faschingbauer2  Claus C Stolt1  Megan Mitchell2  Maria-Theresa Schubert2  Pamela L Strissel2  Christine Henke2 
[1] Institute of Biochemistry, Erlangen, D-91054, Germany;Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University-Clinic Erlangen, Erlangen, Germany
关键词: TASA-TD;    Antisense transcripts;    Trophoblast;    Mouse placenta;    SIRH;    Mart;    Retrotransposon;   
Others  :  1162861
DOI  :  10.1186/s12977-015-0138-8
 received in 2014-09-01, accepted in 2015-01-07,  发布年份 2015
PDF
【 摘 要 】

Background

LTR-retrotransposons became functional neogenes through evolution by acquiring promoter sequences, regulatory elements and sequence modification. Mammalian retrotransposon transcripts (Mart1-9), also called sushi-ichi-related retrotransposon-homolog (SIRH) genes, are a class of Ty3/gypsy LTR-retroelements showing moderate homology to the sushi-ichi LTR-retrotransposon in pufferfish. Rtl1/Mart1 and Peg10/Mart2 expression in mouse placenta and demonstration of their functional roles during placental development exemplifies their importance in cellular processes. In this study, we analyzed all eleven mouse Mart genes from the blastocyst stage and throughout placentogenesis in order to gain information about their expression and regulation.

Results

Quantitative PCR, in situ hybridization (ISH) and immunoblotting showed various expression patterns of the 11 mouse Mart genes through different placental stages. Zcchc5/Mart3, Zcchc16/ Mart4 and Rgag1/Mart9 expression was undetectable. Rtl1/Mart1, Peg10/Mart2, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a gene expression was very low at the blastocyst stage. Later placental stages showed an increase of expression for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a, the latter up to 1,489 molecules/ng cDNA at E9.5. From our recently published findings Peg10/Mart2 was the most highly expressed Mart gene. ISH demonstrated sense and antisense transcript co-localization of Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a in trophoblast subtypes at the junctional zone, with an accumulation of antisense transcripts in the nuclei. To validate these results, we developed a TAG-aided sense/antisense transcript detection (TASA-TD) method, which verified sense and antisense transcripts for Rtl1/Mart1, Rgag4/Mart5 – Cxx1a,b,c/Mart8b,c,a. Except for Rtl1/Mart1 and Cxx1a,b/Mart8b,c all other Mart genes showed a reduced amount of antisense transcripts. Northern blot and 5′ and 3′ RACE confirmed both sense and antisense transcripts for Ldoc1/Mart7 and Cxx1a,b,c/Mart8b,c,a. Immunoblotting demonstrated a single protein throughout all placental stages for Ldoc1/Mart7, but for Cxx1a,b,c/Mart8b,c,a a switch occurred from a 57 kDa protein at E10.5 and E14.5 to a 25 kDa protein at E16.5 and E18.5.

Conclusions

RNA and protein detection of mouse Mart genes support neo-functionalization of retrotransposons in mammalian genomes. Undetectable expression of Zcchc5/Mart3, Zcchc16/Mart4 and Rgag1/Mart9 indicate no role during mouse placentogenesis. Rgag4/Mart5 to Cxx1a,b,c/Mart8b,c,a gene expression support a role for differentiation from the ectoplacental cone. Mart antisense transcripts and protein alterations predict unique and complex molecular regulation in a time directed manner throughout mouse placentogenesis.

【 授权许可】

   
2015 Henke et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413082307846.pdf 1813KB PDF download
Figure 8. 46KB Image download
Figure 7. 50KB Image download
Figure 6. 91KB Image download
Figure 5. 102KB Image download
Figure 4. 63KB Image download
Figure 3. 172KB Image download
Figure 2. 46KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Stocking C, Kozak CA: Murine endogenous retroviruses. Cell Mol Life Sci 2008, 65:3383-98.
  • [2]Kokošar J, Kordiš D: Genesis and regulatory wiring of retroelement-derived domesticated genes: a phylogenomic perspective. Mol Biol Evol 2013, 30:1015-31.
  • [3]Poulter R, Butler M: A retrotransposon family from the pufferfish (fugu) Fugu rubripes. Gene 1998, 215:241-9.
  • [4]Volff J-N, Brosius J: Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 2007, 3:175-90.
  • [5]Steplewski A, Krynska B, Tretiakova A, Haas S, Khalili K, Amini S: MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences. Biochem Biophys Res Commun 1998, 243:295-301.
  • [6]Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PW, et al.: Identification and characterisation of a developmentally regulated mammalian gene that utilises −1 programmed ribosomal frameshifting. Nucleic Acids Res 2001, 29:4079-88.
  • [7]Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T, et al.: A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics 2001, 73:232-7.
  • [8]Nagasaki K, Manabe T, Hanzawa H, Maass N, Tsukada T, Yamaguchi K: Identification of a novel gene, LDOC1, down-regulated in cancer cell lines. Cancer Lett 1999, 140:227-34.
  • [9]Lynch C, Tristem M: A Co-opted gypsy−type LTR-retrotransposon is conserved in the genomes of humans, sheep, mice, and rats. Curr Biol 2003, 13:1518-23.
  • [10]Butler M, Goodwin T, Simpson M, Singh M, Poulter R: Vertebrate LTR retrotransposons of the Tf1/sushi group. J Mol Evol 2001, 52:260-74.
  • [11]Brandt J, Veith A, Volff J-N: A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes. Cytogenet Genome Res 2005, 110:307-17.
  • [12]Ono R, Kuroki Y, Naruse M, Ishii M, Iwasaki S, Toyoda A, et al.: Identification of tammar wallaby SIRH12, derived from a marsupial-specific retrotransposition event. DNA Res 2011, 18:211-9.
  • [13]Volff JN: Cellular genes derived from Gypsy/Ty3 retrotransposons in mammalian genomes. Ann N Y Acad Sci 2009, 1178:233-43.
  • [14]Brandt J, Schrauth S, Veith A-M, Froschauer A, Haneke T, Schultheis C, et al.: Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals. Gene 2005, 345:101-11.
  • [15]Volff JN: Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 2006, 28:913-22.
  • [16]Seitz H, Youngson N, Lin S-P, Dalbert S, Paulsen M, Bachellerie J-P, et al.: Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 2003, 34:261-2.
  • [17]Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, et al.: Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 2008, 40:243-8.
  • [18]Kaneko-Ishino T, Ishino F: Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Dev Growth Differ 2010, 52:533-43.
  • [19]Ono R, Shiura H, Aburatani H, Kohda T, Kaneko-Ishino T, Ishino F: Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res 2003, 13:1696-705.
  • [20]Okita C, Meguro M, Hoshiya H, Haruta M, Sakamoto YK, Oshimura M: A new imprinted cluster on the human chromosome 7q21-q31, identified by human-mouse monochromosomal hybrids. Genomics 2003, 81:556-9.
  • [21]Henke C, Ruebner M, Faschingbauer F, Stolt CC, Schaefer N, Lang N, et al.: Regulation of murine placentogenesis by the retroviral genes Syncytin-A, Syncytin-B and Peg10. Differentiation 2013, 85:150-60.
  • [22]Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, et al.: Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 2006, 38:101-6.
  • [23]Jurka J, Kapitonov VV, Kohany O, Jurka MV: Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007, 8:241-59.
  • [24]Cross J, Baczyk D, Dobric N, Hemberger M, Hughes M, Simmons D, et al.: Genes, development and evolution of the placenta. Placenta 2003, 24:123-30.
  • [25]Rawn SM, Cross JC: The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol 2008, 24:159-81.
  • [26]Simmons DG, Cross JC: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 2005, 284:12-24.
  • [27]Cross JC, Werb Z, Fisher SJ: Implantation and the placenta: key pieces of the development puzzle. Science 1994, 266:1508-18.
  • [28]Simmons DG, Fortier AL, Cross JC: Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol 2007, 304:567-78.
  • [29]Hemberger M, Nozaki T, Masutani M, Cross JC: Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion. Dev Dyn 2003, 227:185-91.
  • [30]Zybina E, Zybina T, Stein G: Trophoblast cell invasiveness and capability for the cell and genome reproduction in rat placenta. Early Pregnancy (Online) 2000, 4:39-57.
  • [31]Zybina EV, Zybina TG: Polytene chromosomes in mammalian cells. Int Rev Cytol 1996, 165:53-119.
  • [32]Faria TN, Deb S, Kwok S, Talamantes F, Soares MJ: Ontogeny of placental lactogen-I and placental lactogen-II expression in the developing rat placenta. Dev Biol 1990, 141:279-91.
  • [33]Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, et al.: Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 2002, 250:358-73.
  • [34]Redline RW, Chernicky CL, Tan HQ, Ilan J, Ilan J: Differential expression of insulin‐like growth factor‐II in specific regions of the late (post day 9.5) murine placenta. Mol Reprod Dev 1993, 36:121-9.
  • [35]Naruse M, Ono R, Irie M, Nakamura K, Furuse T, Hino T, et al.: Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition. Development 2014, 141:4763-71.
  • [36]Perocchi F, Xu Z, Clauder-Münster S, Steinmetz LM: Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 2007, 35:e128.
  • [37]Dupressoir A, Lavialle C, Heidmann T: From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured < i > syncytins in placentation. Placenta 2012, 33:663-71.
  • [38]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290:1151-5.
  • [39]Long M, Betrán E, Thornton K, Wang W: The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003, 4:865-75.
  • [40]Kumar M, Carmichael GG: Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 1998, 62:1415-34.
  • [41]Hagan JP, O'Neill BL, Stewart CL, Kozlov SV, Croce CM: At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 2009, 4:e4352.
  • [42]Davis E, Caiment F, Tordoir X, Cavaillé J, Ferguson-Smith A, Cockett N, et al.: RNAi-mediated allelic trans−interaction at the imprinted Rtl1/Peg11 Locus. Curr Biol 2005, 15:743-9.
  • [43]Bidwell CA, Kramer LN, Perkins AC, Hadfield TS, Moody DE, Cockett NE: Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep. BMC Biol 2004, 2:17. BioMed Central Full Text
  • [44]Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, et al.: Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 2003, 21:379-86.
  • [45]He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW: The antisense transcriptomes of human cells. Science 2008, 322:1855-7.
  • [46]Faghihi MA, Wahlestedt C: Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 2009, 10:637-43.
  • [47]Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, et al.: Over 20% of human transcripts might form sense–antisense pairs. Nucleic Acids Res 2004, 32:4812-20.
  • [48]Sleutels F, Zwart R, Barlow DP: The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002, 415:810-3.
  • [49]Nikaido I, Saito C, Mizuno Y, Meguro M, Bono H, Kadomura M, et al.: Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res 2003, 13:1402-9.
  • [50]Sijen T, Plasterk RH: Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003, 426:310-4.
  • [51]Tufarelli C, Stanley JAS, Garrick D, Sharpe JA, Ayyub H, Wood WG, et al.: Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003, 34:157-65.
  • [52]Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al.: Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat Med 2008, 14:723-30.
  • [53]Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM: Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 2009, 106:1760-5.
  • [54]Peri S, Steen H, Pandey A: GPMAW–a software tool for analyzing proteins and peptides. Trends Biochem Sci 2001, 26:687-9.
  • [55]Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T, et al.: Oligomers, fact or artefact? SDS-PAGE induces dimerization of beta-amyloid in human brain samples. Acta Neuropathol 2013, 125:549-64.
  • [56]Rey MA, Laurent AG, McClure J, Krust B, Montagnier L, Hovanessian AG: Transmembrane envelope glycoproteins of human immunodeficiency virus type 2 and simian immunodeficiency virus SIV-mac exist as homodimers. J Virol 1990, 64:922-6.
  • [57]Freed EO: HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 1998, 251:1-15.
  • [58]Yoshinaka Y, Katoh I, Luftig RB: Murine retrovirus Pr65gag forms a 130 K dimer in the absence of disulfide reducing agents. Virology 1984, 136:274-81.
  • [59]Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn H-M, et al.: Human retroviral gag-and gag-pol-like proteins interact with the transforming growth factor-β receptor activin receptor-like kinase 1. J Biol Chem 2005, 280:8482-93.
  • [60]Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, et al.: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 2003, 63:3043-8.
  • [61]Riordan JD, Dupuy AJ: Domesticated transposable element gene products in human cancer. Mob Genet Elements 2013, 3:e26693.
  • [62]Cheung HH, Lee TL, Davis AJ, Taft DH, Rennert OM, Chan WY: Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br J Cancer 2010, 102:419-27.
  • [63]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al.: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36:W465-9.
  • [64]Tunster SJ, Tycko B, John RM: The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol Cell Biol 2010, 30:295-306.
  • [65]Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S, et al.: Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med (Berl) 2007, 85:23-38.
  文献评价指标  
  下载次数:0次 浏览次数:23次