期刊论文详细信息
Retrovirology
Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors
Finn Skou Pedersen2  Irene Rius Ruiz2  Matthias Wabl1  Martin Sokol2 
[1] Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA;Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
关键词: RNA sequencing (RNA-seq);    Retroviral integration sites;    Chromatin immunoprecipication with sequencing (ChIP-seq);    Deep sequencing;    Oncogenesis;    Insertional mutagenesis;    Gamma-retrovirus;   
Others  :  801909
DOI  :  10.1186/1742-4690-11-36
 received in 2013-09-13, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

Background

Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined.

Results

We detected several novel mechanisms of retroviral insertional mutagenesis: bidirectional activation of mouse transcripts on opposite sides of a provirus including transcription of unannotated mouse sequence; sense/antisense-type activation of genes located on opposite DNA strands; tandem-type activation of distal genes that are positioned adjacently on the same DNA strand; activation of genes that are not the direct integration targets; combination-type insertional mutagenesis, in which enhancer activation, alternative chimeric splicing and retroviral promoter insertion are induced by a single retrovirus. We also show that irrespective of the distance to transcription start sites, the far majority of retroviruses in end-stage tumors colocalize with H3K4Me1 and H3K27Ac-enriched regions in murine lymphoid tissues.

Conclusions

We expose novel retrovirus-induced host transcription activation patterns that reach beyond a single and nearest annotated gene target. Awareness of this previously undescribed layer of complexity may prove important for elucidation of adverse effects in retroviral-based gene therapies. We also show that wild-type gamma-retroviruses are frequently positioned at enhancers, suggesting that integration into regulatory regions is specific and also subject to positive selection for sustaining long-range gene activation in end-stage tumors. Altogether, this study should prove useful for extrapolating adverse outcomes of retroviral vector therapies, and for understanding fundamental cellular regulatory principles and retroviral biology.

【 授权许可】

   
2014 Sokol et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708013630197.pdf 3063KB PDF download
Figure 6. 149KB Image download
Figure 5. 95KB Image download
Figure 4. 177KB Image download
Figure 3. 113KB Image download
Figure 2. 197KB Image download
Figure 1. 179KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hays EF, Levy JA: Differences in lymphomagenic properties of AKR mouse retroviruses. Virology 1984, 138(1):49-57.
  • [2]Pedersen FS, Crowther RL, Tenney DY, Reimold AM, Haseltine WA: Novel leukaemogenic retroviruses isolated from cell line derived from spontaneous AKR tumour. Nature 1981, 292(5819):167-170.
  • [3]Knight S, Collins M, Takeuchi Y: Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther 2013, 13(3):211-227.
  • [4]Nowrouzi A, Glimm H, Von Kalle C, Schmidt M: Retroviral vectors: post entry events and genomic alterations. Viruses 2011, 3(5):429-455.
  • [5]Cavazza A, Moiani A, Mavilio F: Mechanisms of retroviral integration and mutagenesis. Hum Gene Ther 2013, 24(2):119-131.
  • [6]Gabriel R, Schmidt M, Von Kalle C: Integration of retroviral vectors. Curr Opin Immunol 2012, 24(5):592-597.
  • [7]Dabrowska MJ, Dybkaer K, Johnsen HE, Wang B, Wabl M, Pedersen FS: Loss of MicroRNA targets in the 3′ untranslated region as a mechanism of retroviral insertional activation of growth factor independence 1. J Virol 2009, 83(16):8051-8061.
  • [8]Uren AG, Kool J, Berns A, Van Lohuizen M: Retroviral insertional mutagenesis: past, present and future. Oncogene 2005, 24(52):7656-7672.
  • [9]Mikkers H, Berns A: Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 2003, 88:53-99.
  • [10]Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al Ghonaium A, White HN, Smith JL, Levinsky RJ, Ali RR, Kinnon C, Thrasher AJ: Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004, 364(9452):2181-2187.
  • [11]Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002, 346(16):1185-1193.
  • [12]Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000, 288(5466):669-672.
  • [13]Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ: Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008, 118(9):3143-3150.
  • [14]Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M, Kramer A, Schwable J, Glimm H, Koehl U, Preiss C, Ball C, Martin H, Gohring G, Schwarzwaelder K, Hofmann WK, Karakaya K, Tchatchou S, Yang R, Reinecke P, Kuhlcke K, Schlegelberger B, Thrasher AJ, Hoelzer D, Seger R, von Kalle C, Grez M: Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nature medicine 2010, 16(2):198-204.
  • [15]Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kuhlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Luthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M: Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature medicine 2006, 12(4):401-409.
  • [16]Vijaya S, Steffen DL, Robinson HL: Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol 1986, 60(2):683-692.
  • [17]Wu X, Li Y, Crise B, Burgess SM: Transcription start regions in the human genome are favored targets for MLV integration. Science 2003, 300(5626):1749-1751.
  • [18]Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G, Miselli F, Sartori D, Guffanti A, Di Serio C, Ambrosi A, De Bellis G, Mavilio F: High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 2010, 116(25):5507-5517.
  • [19]Roth SL, Malani N, Bushman FD: Gammaretroviral Integration into Nucleosomal Target DNA In Vivo. J Virol 2011, 85(14):7393-7401.
  • [20]Biasco L, Ambrosi A, Pellin D, Bartholomae C, Brigida I, Roncarolo MG, Di Serio C, Von Kalle C, Schmidt M, Aiuti A: Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med 2011, 3(2):89-101.
  • [21]Moiani A, Miccio A, Rizzi E, Severgnini M, Pellin D, Suerth JD, Baum C, De Bellis G, Mavilio F: Deletion of the LTR enhancer/promoter has no impact on the integration profile of MLV vectors in human hematopoietic progenitors. PLoS One 2013, 8(1):e55721.
  • [22]Lafave MC, Varshney GK, Gildea DE, Wolfsberg TG, Baxevanis AD, Burgess SM: MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res 2014, 42(7):4257-4269.
  • [23]Santoni FA, Hartley O, Luban J: Deciphering the code for retroviral integration target site selection. PLoS Comput Biol 2010, 6(11):e1001008.
  • [24]De Ravin SS, Su L, Theobald N, Choi U, Macpherson JL, Poidinger M, Symonds G, Pond SM, Ferris AL, Hughes SH, Malech HL, Wu X: Enhancers are major targets for murine leukemia virus vector integration. J Virol 2014, 88(8):4504-4513.
  • [25]Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B: A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488(7409):116-120.
  • [26]Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R: Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010, 107(50):21931-21936.
  • [27]Zhang B, Day DS, Ho JW, Song L, Cao J, Christodoulou D, Seidman JG, Crawford GE, Park PJ, Pu WT: A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. Genome Res 2013, 23(6):917-927.
  • [28]Tian Y, Jia Z, Wang J, Huang Z, Tang J, Zheng Y, Tang Y, Wang Q, Tian Z, Yang D, Zhang Y, Fu X, Song J, Liu S, van Velkinburgh JC, Wu Y, Ni B: Global mapping of H3K4me1 and H3K4me3 reveals the chromatin state-based cell type-specific gene regulation in human Treg cells. PLoS One 2011, 6(11):e27770.
  • [29]Sharma A, Larue RC, Plumb MR, Malani N, Male F, Slaughter A, Kessl JJ, Shkriabai N, Coward E, Aiyer SS, Green PL, Wu L, Roth MJ, Bushman FD, Kvaratskhelia M: BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A 2013, 110(29):12036-12041.
  • [30]De Rijck J, de Kogel C, Demeulemeester J, Vets S, El Ashkar S, Malani N, Bushman FD, Landuyt B, Husson SJ, Busschots K, Gijsbers R, Debyser Z: The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell reports 2013, 5(4):886-894.
  • [31]Taher L, Smith R, Kim M, Ahituv N, Ovcharenko I: Sequence signatures extracted from proximal promoters can be used to predict distal enhancers. Genome Biol 2013, 14(10):R117. BioMed Central Full Text
  • [32]Maston GA, Evans SK, Green MR: Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2006, 7:29-59.
  • [33]Lettice LA, Heaney SJ, Purdie LA, Li L, De Beer P, Oostra BA, Goode D, Elgar G, Hill RE, De Graaff E: A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 2003, 12(14):1725-1735.
  • [34]Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T: Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 2005, 132(4):797-803.
  • [35]Zhang J, Markus J, Bies J, Paul T, Wolff L: Three Murine Leukemia Virus Integration Regions within 100 Kilobases Upstream of c-myb Are Proximal to the 5′ Regulatory Region of the Gene through DNA Looping. J Virol 2012, 86(19):10524-10532.
  • [36]Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E, Berns A: High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002, 32(1):153-159.
  • [37]Uren AG, Mikkers H, Kool J, van der Weyden L, Lund AH, Wilson CH, Rance R, Jonkers J, van Lohuizen M, Berns A, Adams DJ: A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites. Nat Protoc 2009, 4(5):789-798.
  • [38]Devon RS, Porteous DJ, Brookes AJ: Splinkerettes–improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 1995, 23(9):1644-1645.
  • [39]Ustek D, Sirma S, Gumus E, Arikan M, Cakiris A, Abaci N, Mathew J, Emrence Z, Azakli H, Cosan F, Cakar A, Parlak M, Kursun O: A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology. Infect Genet Evol 2012, 12(7):1349-1354.
  • [40]Ciuffi A, Barr SD: Identification of HIV integration sites in infected host genomic DNA. Methods 2011, 53(1):39-46.
  • [41]Arens A, Appelt J-U, Bartholomae CC, Gabriel R, Paruzynski A, Gustafson D, Cartier N, Aubourg P, Deichmann A, Glimm H, von Kalle C, Schmidt M: Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites. Human Gene Therapy Methods April 2012, 23(2):111-118.
  • [42]Schopman NC, Willemsen M, Liu YP, Bradley T, Van Kampen A, Baas F, Berkhout B, Haasnoot J: Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 2012, 40(1):414-427.
  • [43]Lefebvre G, Desfarges S, Uyttebroeck F, Munoz M, Beerenwinkel N, Rougemont J, Telenti A, Ciuffi A: Analysis of HIV-1 expression level and sense of transcription by high-throughput sequencing of the infected cell. J Virol 2011, 85(13):6205-6211.
  • [44]Cesana D, Sgualdino J, Rudilosso L, Merella S, Naldini L, Montini E: Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations. J Clin Invest 2012, 122(5):1667-1676.
  • [45]Koudijs MJ, Klijn C, van der Weyden L, Kool J, ten Hoeve J, Sie D, Prasetyanti PR, Schut E, Kas S, Whipp T, Cuppen E, Wessels L, Adams DJ, Jonkers J: High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors. Genome Res 2011, 21(12):2181-2189.
  • [46]Chang ST, Sova P, Peng X, Weiss J, Law GL, Palermo RE, Katze MG: Next-generation sequencing reveals HIV-1-mediated suppression of T cell activation and RNA processing and regulation of noncoding RNA expression in a CD4+ T cell line. mBio 2011, 2:e00134-11.
  • [47]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7(3):562-578.
  • [48]Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M: Pvt1-encoded microRNAs in oncogenesis. Retrovirology 2008, 5:4. BioMed Central Full Text
  • [49]Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M, Killeen N, Wabl M: Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci U S A 2006, 103(49):18680-18684.
  • [50]Lum AM, Wang BB, Li L, Channa N, Bartha G, Wabl M: Retroviral activation of the mir-106a microRNA cistron in T lymphoma. Retrovirology 2007, 4:5. BioMed Central Full Text
  • [51]Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG: RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 2004, 32(Database issue):D523-D527.
  • [52]Dabrowska MJ, Ejegod D, Lassen LB, Johnsen HE, Wabl M, Pedersen FS, Dybkaer K: Gene expression profiling of murine T-cell lymphoblastic lymphoma identifies deregulation of S-phase initiating genes. Leuk Res 2013, 37(10):1383-1390.
  • [53]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26(6):841-842.
  • [54]Rasmussen MH, Ballarin-Gonzalez B, Liu J, Lassen LB, Fuchtbauer A, Fuchtbauer EM, Nielsen AL, Pedersen FS: Antisense transcription in gammaretroviruses as a mechanism of insertional activation of host genes. J Virol 2010, 84(8):3780-3788.
  • [55]Kikuchi R, Yagi S, Kusuhara H, Imai S, Sugiyama Y, Shiota K: Genome-wide analysis of epigenetic signatures for kidney-specific transporters. Kidney Int 2010, 78(6):569-577.
  • [56]Eun B, Sampley ML, Good AL, Gebert CM, Pfeifer K: Promoter cross-talk via a shared enhancer explains paternally biased expression of Nctc1 at the Igf2/H19/Nctc1 imprinted locus. Nucleic Acids Res 2013, 41(2):817-826.
  • [57]Sanyal A, Lajoie BR, Jain G, Dekker J: The long-range interaction landscape of gene promoters. Nature 2012, 489(7414):109-113.
  • [58]Dong H, Luo L, Hong S, Siu H, Xiao Y, Jin L, Chen R, Xiong M: Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Syst Biol 2010, 4:163. BioMed Central Full Text
  • [59]Wei W, Pelechano V, Jarvelin AI, Steinmetz LM: Functional consequences of bidirectional promoters. Trends Genet 2011, 27(7):267-276.
  • [60]Nielsen AA, Kjartansdottir KR, Rasmussen MH, Sorensen AB, Wang B, Wabl M, Pedersen FS: Activation of the brain-specific neurogranin gene in murine T-cell lymphomas by proviral insertional mutagenesis. Gene 2009, 442(1–2):55-62.
  • [61]Karrman K, Kjeldsen E, Lassen C, Isaksson M, Davidsson J, Andersson A, Hasle H, Fioretos T, Johansson B: The t(X;7)(q22;q34) in paediatric T-cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T-cell receptor beta locus. Br J Haematol 2009, 144(4):546-551.
  • [62]Li D, Bachinski LL, Roberts R: Genomic organization and isoform-specific tissue expression of human NAPOR (CUGBP2) as a candidate gene for familial arrhythmogenic right ventricular dysplasia. Genomics 2001, 74(3):396-401.
  • [63]Hon GC, Hawkins RD, Ren B: Predictive chromatin signatures in the mammalian genome. Hum Mol Genet 2009, 18(R2):R195-R201.
  • [64]Bulger M, Groudine M: Looping versus linking: toward a model for long-distance gene activation. Genes Dev 1999, 13(19):2465-2477.
  • [65]Robertson AG, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, Cezard T, Fejes AP, Wederell ED, Cullum R, Euskirchen G, Krzywinski M, Birol I, Snyder M, Hoodless PA, Hirst M, Marra MA, Jones SJ: Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res 2008, 18(12):1906-1917.
  • [66]Keng VW, Villanueva A, Chiang DY, Dupuy AJ, Ryan BJ, Matise I, Silverstein KA, Sarver A, Starr TK, Akagi K, Tessarollo L, Collier LS, Powers S, Lowe SW, Jenkins NA, Copeland NG, Llovet JM, Largaespada DA: A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 2009, 27(3):264-274.
  • [67]Martiney MJ, Rulli K, Beaty R, Levy LS, Lenz J: Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus. J Virol 1999, 73(9):7599-7606.
  • [68]Morrison HL, Soni B, Lenz J: Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995, 69(1):446-455.
  • [69]Evans LH, Cloyd MW: Friend and Moloney murine leukemia viruses specifically recombine with different endogenous retroviral sequences to generate mink cell focus-forming viruses. Proc Natl Acad Sci U S A 1985, 82(2):459-463.
  • [70]Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, Van Wezenbeek P, Melief C, Berns A: Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 1984, 37(1):141-150.
  • [71]Dave UP, Akagi K, Tripathi R, Cleveland SM, Thompson MA, Yi M, Stephens R, Downing JR, Jenkins NA, Copeland NG: Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet 2009, 5(5):e1000491.
  • [72]Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302(5644):415-419.
  • [73]Abel U, Deichmann A, Nowrouzi A, Gabriel R, Bartholomae CC, Glimm H, Von Kalle C, Schmidt M: Analyzing the number of common integration sites of viral vectors–new methods and computer programs. PLoS One 2011, 6(10):e24247.
  • [74]Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, Downing JR: Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008, 322(5906):1377-1380.
  • [75]Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458(7239):719-724.
  • [76]Torkamani A, Schork NJ: Identification of rare cancer driver mutations by network reconstruction. Genome Res 2009, 19(9):1570-1578.
  • [77]Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui C-H, Downing JR, Campana D: A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 2007, 110(4):1271-1277.
  • [78]Schuettpelz LG, Gopalan PK, Giuste FO, Romine MP, van Os R, Link DC: Kruppel-like factor 7 overexpression suppresses hematopoietic stem and progenitor cell function. Blood 2012, 120(15):2981-2989.
  • [79]Park KS, Youn HJ, Jung SH: A study for expression and biological function of N-myc downstream regulated gene 2 in breast cancer. J Breast Cancer 2007, 10(3):180-192.
  • [80]Ramalingam S, Ramamoorthy P, Subramaniam D, Anant S: Reduced expression of RNA binding protein CELF2, a putative tumor suppressor gene in colon cancer. Immunogastroenterology 2012, 1(1):27-33.
  • [81]Masso-Welch PA, Winston JS, Edge S, Darcy KM, Asch H, Vaughan MM, Ip MM: Altered expression and localization of PKC eta in human breast tumors. Breast Cancer Res Treat 2001, 68(3):211-223.
  • [82]Perez-Magan E, Campos-Martin Y, Mur P, Fiano C, Ribalta T, Garcia JF, Rey JA, Rodriguez de Lope A, Mollejo M, Melendez B: Genetic alterations associated with progression and recurrence in meningiomas. J Neuropathol Exp Neurol 2012, 71(10):882-893.
  • [83]Yang Y, Kiss H, Kost-Alimova M, Kedra D, Fransson I, Seroussi E, Li J, Szeles A, Kholodnyuk I, Imreh MP, Fodor K, Hadlaczky G, Klein G, Dumanski JP, Imreh S: A 1-Mb PAC contig spanning the common eliminated region 1 (CER1) in microcell hybrid-derived SCID tumors. Genomics 1999, 62(2):147-155.
  • [84]Kholodnyuk I, Kost-Alimova M, Kashuba V, Gizatulin R, Szeles A, Stanbridge EJ, Zabarovsky ER, Klein G, Imreh S: A 3p21.3 region is preferentially eliminated from human chromosome 3/mouse microcell hybrids during tumor growth in SCID mice. Genes Chromosomes Cancer 1997, 18(3):200-211.
  • [85]Ingvarsson S: Tumor suppressor genes on human chromosome 3 and cancer pathogenesis. Cancer Genomics Proteomi 2005, 2(4):247-253.
  • [86]Qu J, Lu W, Li B, Lu C, Wan X: WWOX induces apoptosis and inhibits proliferation in cervical cancer and cell lines. Int J Mol Cell Med 2013, 31(5):1139-1147.
  • [87]Messina S, Frati L, Leonetti C, Zuchegna C, Di Zazzo E, Calogero A, Porcellini A: Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas. Oncogene 2011, 30(35):3813-3820.
  • [88]Hong L, Li X, Jin H, Yan L, Wu K, Ding J, Zhao Y, Guo W, Fan D: Up-regulation of tumor suppressor genes might promote the malignant phenotype of cancer cells. Med Hypotheses 2007, 69(6):1379.
  • [89]Karolchik D, Hinrichs AS, Kent WJ: The UCSC genome browser. Curr Protoc Hum Genet 2011, Chapter 18:Unit18 16. editorial board, Jonathan L Haines [et al.]
  • [90]Gonzalez-Perez A, Jene-Sanz A, Lopez-Bigas N: The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol 2013, 14(9):r106. BioMed Central Full Text
  • [91]Zeitz MJ, Ay F, Heidmann JD, Lerner PL, Noble WS, Steelman BN, Hoffman AR: Genomic interaction profiles in breast cancer reveal altered chromatin architecture. PLoS One 2013, 8(9):e73974.
  • [92]Orekhova AS, Rubtsov PM: Bidirectional promoters in the transcription of mammalian genomes. Biochemistry 2013, 78(4):335-341.
  • [93]Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, Iyer MK, Barrette T, Shanmugam A, Dhanasekaran SM, Palanisamy N, Chinnaiyan AM: Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 2012, 149(7):1622-1634.
  • [94]Cheetham SW, Gruhl F, Mattick JS, Dinger ME: Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013, 108(12):2419-2425.
  • [95]Ong C-T, Corces VG: Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 2011, 12(4):283-293.
  • [96]Bulger M, Groudine M: Functional and mechanistic diversity of distal transcription enhancers. Cell 2011, 144(3):327-339.
  • [97]Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest AR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P: The regulated retrotransposon transcriptome of mammalian cells. Nature genetics 2009, 41(5):563-571.
  • [98]Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D: Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci U S A 2010, 107(29):12992-12997.
  • [99]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.
  • [100]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [101]North BV, Curtis D, Sham PC: A note on the calculation of empirical P values from Monte Carlo procedures. Am J Hum Genet 2002, 71(2):439-441.
  • [102]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  文献评价指标  
  下载次数:9次 浏览次数:16次