Virology Journal | |
CD4+CD25+ T regulatory cells activated during feline immunodeficiency virus infection convert T helper cells into functional suppressors through a membrane-bound TGFβ / GARP-mediated mechanism | |
Jonathan E Fogle3  Mary B Tompkins1  Christopher S Petty2  Michelle M Miller1  | |
[1] Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh NC 27607, USA;Current address: Immunotherapy Technologies, LLC, 621 Hutton Street, Suite 105, Raleigh NC 27606, USA;College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA | |
关键词: GARP; mTGFβ; Treg cells; Lentivirus; AIDS; HIV; FIV; | |
Others : 812614 DOI : 10.1186/1743-422X-11-7 |
|
received in 2013-09-30, accepted in 2014-01-09, 发布年份 2014 | |
【 摘 要 】
Background
We and others have previously reported that cell membrane-bound TGFβ (mTGFβ) on activated T regulatory (Treg) cells mediates suppressor function. Current findings suggest that a novel protein known as Glycoprotein A Repetitions Predominant (GARP) anchors mTGFβ to the Treg cell surface and facilitates suppressor activity. Recently, we have described that GARP+TGFβ+ Treg cells expand during the course of FIV infection. Because Treg cells are anergic and generally exhibit poor proliferative ability, we asked how Treg homeostasis is maintained during the course of feline immunodeficiency virus (FIV) infection.
Results
Here, we report that Treg cells from FIV+ cats express GARP and mTGFβ and convert T helper (Th) cells into phenotypic and functional Treg cells. Th to Treg conversion was abrogated by anti-TGFβ or anti-GARP treatment of Treg cells or by anti-TGFβRII treatment of Th cells, suggesting that Treg cell recruitment from the Th pool is mediated by TGFβ/TGFβRII signaling and that cell-surface GARP plays a major role in this process.
Conclusions
These findings suggest Th to Treg conversion may initiate a cascade of events that contributes to the maintenance of virus reservoirs, progressive Th cell immunosuppression, and the development of immunodeficiency, all of which are central to the pathogenesis of AIDS lentivirus infections.
【 授权许可】
2014 Miller et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140709091000163.pdf | 1364KB | download | |
Figure 5. | 183KB | Image | download |
Figure 4. | 102KB | Image | download |
Figure 3. | 173KB | Image | download |
Figure 2. | 57KB | Image | download |
Figure 1. | 57KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Bettini M, Vignali DA: Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 2009, 21(6):612-618.
- [2]Bluestone JA, Abbas AK: Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003, 3(3):253-257.
- [3]Ziegler SF: FOXP3: of mice and men. Annu Rev Immunol 2006, 24:209-226.
- [4]Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, Daucher M, Planta M, McGlaughlin M, Jackson R, Ziegler SF, et al.: CD25 + CD4+ Regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004, 200(3):331-343.
- [5]Kinter AL, Horak R, Sion M, Riggin L, McNally J, Lin Y, Jackson R, O’Shea A, Roby G, Kovacs C, et al.: CD25+ regulatory T cells isolated from HIV-infected individuals suppress the cytolytic and nonlytic antiviral activity of HIV-specific CD8+ T cells in vitro. AIDS Res Hum Retroviruses 2007, 23(3):438-450.
- [6]Lourenco EV, La Cava A: Natural regulatory T cells in autoimmunity. Autoimmunity 2011, 44(1):33-42.
- [7]Li S, Floess S, Hamann A, Gaudieri S, Lucas A, Hellard M, Roberts S, Paukovic G, Plebanski M, Loveland BE, et al.: Analysis of FOXP3+ regulatory T cells that display apparent viral antigen specificity during chronic hepatitis C virus infection. PLoS Pathog 2009, 5(12):e1000707.
- [8]Miller MM, Fogle JE, Ross P, Tompkins MB: Feline glycoprotein A repetitions predominant anchors transforming growth factor beta on the surface of activated CD4(+)CD25(+) regulatory T cells and mediates AIDS lentivirus-induced T cell immunodeficiency. AIDS Res Hum Retroviruses 2013, 29(4):641-651.
- [9]Probst-Kepper M, Geffers R, Kroger A, Viegas N, Erck C, Hecht HJ, Lunsdorf H, Roubin R, Moharregh-Khiabani D, Wagner K, et al.: GARP: a key receptor controlling FOXP3 in human regulatory T cells. J Cell Mol Med 2009, 13(9B):3343-3357.
- [10]Probst-Kepper M, Buer J: FOXP3 and GARP (LRRC32): the master and its minion. Biol Direct 2010, 5:8. BioMed Central Full Text
- [11]Stockis J, Colau D, Coulie PG, Lucas S: Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol 2009, 39(12):3315-3322.
- [12]Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009, 106(32):13445-13450.
- [13]Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D: Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009, 106(32):13439-13444.
- [14]Joshi A, Garg H, Tompkins MB, Tompkins WA: Different thresholds of T cell activation regulate FIV infection of CD4(+)CD25(+) and CD4(+)CD25(−) cells. Virology 2005, 335(2):212-221.
- [15]Yamazaki S, Patel M, Harper A, Bonito A, Fukuyama H, Pack M, Tarbell KV, Talmor M, Ravetch JV, Inaba K, et al.: Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci USA 2006, 103(8):2758-2763.
- [16]Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM: Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003, 198(12):1875-1886.
- [17]Petty CS, Tompkins MB, Tompkins WA: Transforming growth factor-beta/transforming growth factor-betaRII signaling may regulate CD4 + CD25+ T-regulatory cell homeostasis and suppressor function in feline AIDS lentivirus infection. J Acquir Immune Defic Syndr 2008, 47(2):148-160.
- [18]Fogle JE, Mexas AM, Tompkins WA, Tompkins MB: CD4(+)CD25(+) T regulatory cells inhibit CD8(+) IFN-gamma production during acute and chronic FIV infection utilizing a membrane TGF-beta-dependent mechanism. AIDS Res Hum Retroviruses 2010, 26(2):201-216.
- [19]Fogle JE, Tompkins WA, Tompkins MB: CD4 + CD25+ T regulatory cells from FIV + cats induce a unique anergic profile in CD8+ lymphocyte targets. Retrovirology 2010, 7:97. BioMed Central Full Text
- [20]Mexas AM, Fogle JE, Tompkins WA, Tompkins MB: CD4 + CD25+ regulatory T cells are infected and activated during acute FIV infection. Vet Immunol Immunopathol 2008, 126(3–4):263-272.
- [21]Joshi A, Vahlenkamp TW, Garg H, Tompkins WA, Tompkins MB: Preferential replication of FIV in activated CD4(+)CD25(+)T cells independent of cellular proliferation. Virology 2004, 321(2):307-322.
- [22]Joshi A, Garg H, Tompkins MB, Tompkins WA: Preferential Feline Immunodeficiency Virus (FIV) Infection of CD4+ CD25+ T-regulatory cells correlates both with surface expression of CXCR4 and activation of FIV long terminal repeat binding cellular transcriptional factors. J Virol 2005, 79(8):4965-4976.
- [23]Oswald-Richter K, Grill SM, Shariat N, Leelawong M, Sundrud MS, Haas DW, Unutmaz D: HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol 2004, 2(7):E198.
- [24]Andersson J, Boasso A, Nilsson J, Zhang R, Shire NJ, Lindback S, Shearer GM, Chougnet CA: The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol 2005, 174(6):3143-3147.
- [25]Vahlenkamp TW, Tompkins MB, Tompkins WA: The role of CD4 + CD25+ regulatory T cells in viral infections. Vet Immunol Immunopathol 2005, 108(1–2):219-225.
- [26]Iwashiro M, Messer RJ, Peterson KE, Stromnes IM, Sugie T, Hasenkrug KJ: Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc Natl Acad Sci USA 2001, 98(16):9226-9230.
- [27]Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y: Human immunodeficiency virus-driven expansion of CD4 + CD25+ regulatory T cells which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 2004, 104:3249-3256.
- [28]Dieckmann D, Plottner H, Dotterweich S, Schuler G: Activated CD4+ CD25+ T cells suppress antigen-specific CD4+ and CD8+ T cells but induce a suppressive phenotype only in CD4+ T cells. Immunology 2005, 115(3):305-314.
- [29]Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH: Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 2002, 196(2):255-260.
- [30]Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA: Natural and induced CD4 + CD25+ cells educate CD4 + CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 2004, 172(9):5213-5221.
- [31]Vahlenkamp T, Tompkins M, Tompkins W: Feline immunodeficiency virus (FIV) infection phenotypically and functionally activates immunosuppressive CD4 + CD25+ T regulatory (Treg) cells. J Immunol 2004, 172:4752-4761.
- [32]Gebhard D, Dow J, Childers T, Alvelo J, Tompkins M, Tompkins W: Progressive expansion of an L-selectin-negative CD8 cell with anti-feline immunodeficiency virus (FIV) suppressor function in the circulation of FIV-infected cats. J Infect Dis 1999, 180:1503-1513.
- [33]Tompkins MB, Bull ME, Dow JL, Ball JM, Collisson EW, Winslow BJ, Phadke AP, Vahlenkamp TW, Tompkins WA: Feline immunodeficiency virus infection is characterized by B7 + CTLA4+ T cell apoptosis. J Infect Dis 2002, 185(8):1077-1093.
- [34]Eggena MP, Barugahare B, Jones N, Okello M, Mutalya S, Kityo C, Mugyenyi P, Cao H: Depletion of regulatory T cells in HIV infection is associated with immune activation. J Immunol 2005, 174(7):4407-4414.
- [35]Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT: CD4 + CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 2003, 198(6):889-901.
- [36]Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, Strober W: TGF-beta 1 plays an important role in the mechanism of CD4 + CD25+ regulatory T cell activity in both humans and mice. J Immunol 2004, 172(2):834-842.
- [37]Nakamura K, Kitani A, Strober W: Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001, 194(5):629-644.
- [38]Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF: Cutting edge: TGF-beta induces a regulatory phenotype in CD4 + CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004, 172(9):5149-5153.
- [39]Marie JC, Letterio JJ, Gavin M, Rudensky AY: TGF-beta1 maintains suppressor function and Foxp3 expression in CD4 + CD25+ regulatory T cells. J Exp Med 2005, 201(7):1061-1067.
- [40]Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4 + CD25- T cells. J Clin Invest 2003, 112(9):1437-1443.
- [41]Bucci J, English R, Jordan H, Childers T, Tompkins M, Tompkins W: Mucosally transmitted feline immunodeficiency virus induces a CD8+ antiviral response that correlates with reduction of cell-associated virus. J Infect Dis 1998, 177:18-25.
- [42]Tompkins MB, Ogilvie GK, Franklin RA, Kelley KW, Tompkins WA: Induction of IL-2 and lymphokine activated killer cells in the cat. Vet Immunol Immunopathol 1987, 16(1–2):1-10.
- [43]Tompkins MB, Gebhard DH, Bingham HR, Hamilton MJ, Davis WC, Tompkins WAF: Characterization of monoclonal antibodies to feline T lymphocytes and their use in the analysis of lymphocyte tissue distribution in the cat. Vet Immunol Immunopathol 1990, 26:305-317.