期刊论文详细信息
Radiation Oncology
Hypofractionated radiosurgery for intact or resected brain metastases: defining the optimal dose and fractionation
Ian Crocker2  Walter J Curran2  Hui-Kuo Shu2  Roshan Prabhu2  Brian Gebhardt1  Bree R Eaton2 
[1]Current Affiliation: Medical College of Georgia, Augusta, GA, USA
[2]Departments of Radiation Oncology and the Winship Cancer Institute, Emory University, 1365 Clifton Rd. NE, Building A, Suite CT 104, Atlanta, GA, 30322, USA
关键词: Metastases;    Brain;    Radiosurgery;    Hypofractionated;   
Others  :  1153818
DOI  :  10.1186/1748-717X-8-135
 received in 2013-02-24, accepted in 2013-06-01,  发布年份 2013
PDF
【 摘 要 】

Background

Hypofractionated Radiosurgery (HR) is a therapeutic option for delivering partial brain radiotherapy (RT) to large brain metastases or resection cavities otherwise not amenable to single fraction radiosurgery (SRS). The use, safety and efficacy of HR for brain metastases is not well characterized and the optimal RT dose-fractionation schedule is undefined.

Methods

Forty-two patients treated with HR in 3-5 fractions for 20 (48%) intact and 22 (52%) resected brain metastases with a median maximum dimension of 3.9 cm (0.8-6.4 cm) between May 2008 and August 2011 were reviewed. Twenty-two patients (52%) had received prior radiation therapy. Local (LC), intracranial progression free survival (PFS) and overall survival (OS) are reported and analyzed for relationship to multiple RT variables through Cox-regression analysis.

Results

The most common dose-fractionation schedules were 21 Gy in 3 fractions (67%), 24 Gy in 4 fractions (14%) and 30 Gy in 5 fractions (12%). After a median follow-up time of 15 months (range 2-41), local failure occurred in 13 patients (29%) and was a first site of failure in 6 patients (14%). Kaplan-Meier estimates of 1 year LC, intracranial PFS, and OS are: 61% (95% CI 0.53 – 0.70), 55% (95% CI 0.47 – 0.63), and 73% (95% CI 0.65 – 0.79), respectively. Local tumor control was negatively associated with PTV volume (p = 0.007) and was a significant predictor of OS (HR 0.57, 95% CI 0.33 - 0.98, p = 0.04). Symptomatic radiation necrosis occurred in 3 patients (7%).

Conclusions

HR is well tolerated in both new and recurrent, previously irradiated intact or resected brain metastases. Local control is negatively associated with PTV volume and a significant predictor of overall survival, suggesting a need for dose escalation when using HR for large intracranial lesions.

【 授权许可】

   
2013 Eaton et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407101014910.pdf 399KB PDF download
Figure 3. 23KB Image download
Figure 2. 28KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Andrews DW, Scott CB, Sperduto PW, et al.: Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004, 363:1665-72.
  • [2]Kondziolka D, Patel A, Lunsford LD, Kassam A, Flickinger JC: Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 1999, 45:427-34.
  • [3]Mehta MP, Tsao MN, Whelan TJ, et al.: The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 2005, 63:37-46.
  • [4]Linskey ME, Andrews DW, Asher AL, et al.: The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2010, 96:45-68.
  • [5]Chang EL, Wefel JS, Hess KR, et al.: Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 2009, 10:1037-44.
  • [6]Adler JR, Cox RS, Kaplan I, Martin DP: Stereotactic radiosurgical treatment of brain metastases. J Neurosurg 1992, 76:444-9.
  • [7]Alexander E 3rd, Moriarty TM, Davis RB, et al.: Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst 1995, 87:34-40.
  • [8]Shaw E, Scott C, Souhami L, et al.: Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 2000, 47:291-8.
  • [9]Aoki M, Abe Y, Hatayama Y, Kondo H, Basaki K: Clinical outcome of hypofractionated conventional conformation radiotherapy for patients with single and no more than three metastatic brain tumors, with noninvasive fixation of the skull without whole brain irradiation. Int J Radiat Oncol Biol Phys 2006, 64:414-8.
  • [10]Aoyama H, Shirato H, Onimaru R, et al.: Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int J Radiat Oncol Biol Phys 2003, 56:793-800.
  • [11]De Potter B, De Meerleer G, De Neve W, Boterberg T, Speleers B, Ost P: Hypofractionated frameless stereotactic intensity-modulated radiotherapy with whole brain radiotherapy for the treatment of 1-3 brain metastases. Neurol Sci 2013, 34(5):647-653. Official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
  • [12]Giubilei C, Ingrosso G, D’Andrea M, Benassi M, Santoni R: Hypofractionated stereotactic radiotherapy in combination with whole brain radiotherapy for brain metastases. J Neurooncol 2009, 91:207-12.
  • [13]Kwon AK, Dibiase SJ, Wang B, Hughes SL, Milcarek B, Zhu Y: Hypofractionated stereotactic radiotherapy for the treatment of brain metastases. Cancer 2009, 115:890-8.
  • [14]Lindvall P, Bergstrom P, Lofroth PO, Henriksson R, Bergenheim AT: Hypofractionated conformal stereotactic radiotherapy alone or in combination with whole-brain radiotherapy in patients with cerebral metastases. Int J Radiat Oncol Biol Phys 2005, 61:1460-6.
  • [15]Narayana A, Chang J, Yenice K, et al.: Hypofractionated stereotactic radiotherapy using intensity-modulated radiotherapy in patients with one or two brain metastases. Stereotact Funct Neurosurg 2007, 85:82-7.
  • [16]Ogura K, Mizowaki T, Ogura M, et al.: Outcomes of hypofractionated stereotactic radiotherapy for metastatic brain tumors with high risk factors. J Neurooncol 2012, 109(2):425-432.
  • [17]Wang CC, Floyd SR, Chang CH, et al.: Cyberknife hypofractionated stereotactic radiosurgery (HSRS) of resection cavity after excision of large cerebral metastasis: efficacy and safety of an 800 cGy x 3 daily fractions regimen. J Neurooncol 2012, 106:601-10.
  • [18]Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G: Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiotherapy and oncology. J Eu Soc Therap Radio Oncol 2006, 81:18-24.
  • [19]Fahrig A, Ganslandt O, Lambrecht U, et al.: Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft. 2007, 183:625-630.
  • [20]Eric J, Hall AJG: Radiobiology for the radiologist. 6th edition. Philadelphia, PA: Lippincott Williams and Wilkins; 2006.
  • [21]Park C, Papiez L, Zhang S, Story M, Timmerman RD: Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 2008, 70:847-52.
  • [22]Dhabaan A, Schreibmann E, Siddiqi A, et al.: Six degrees of freedom CBCT-based positioning for intracranial targets treated with frameless stereotactic radiosurgery. J app clin med phy/Am College Med Phy 2012, 13:3916.
  • [23]Prabhu RS, Dhabaan A, Hall WA, et al.: Clinical outcomes for a novel 6 degrees of freedom image guided localization method for frameless radiosurgery for intracranial brain metastases. J Neurooncol 2013, 113(1):93-99.
  文献评价指标  
  下载次数:0次 浏览次数:2次