Particle and Fibre Toxicology | |
Paratransgenesis: a promising new strategy for mosquito vector control | |
Mauro Toledo Marrelli1  André Barretto Bruno Wilke1  | |
[1] Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo 715, São Paulo CEP-01246-904, SP, Brazil | |
关键词: Neglected diseases; Transgenic mosquito; Bacteria; Vector control; Paratransgenesis; | |
Others : 1224144 DOI : 10.1186/s13071-015-0959-2 |
|
received in 2015-02-09, accepted in 2015-06-17, 发布年份 2015 | |
【 摘 要 】
The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host’s reproduction; (c) reducing the vector’s competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated pest management tool for mosquito control.
【 授权许可】
2015 Wilke and Marrelli.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150908082313536.pdf | 480KB | download |
【 参考文献 】
- [1]New report signals slowdown in the fight against malaria 2012. Word Health Organization, Geneva; 2012.
- [2]WHO-TDR. Scientific Working Group Report on Dengue. 2006.
- [3]Global Strategy for dengue prevention and control, 2012–2020: WHO Report. WHO, Geneva; 2012.
- [4]WHO - Progress report 2000–2009 and strategic plan 2010–2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. 2010 World Health Organization. ISBN 978-92-4-150072-2
- [5]Dorta DM, Vasuki V, Rajavel A. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species. Rev Saude Publica. 1993; 27:391-397.
- [6]Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: Full circle? Comp Immunol Microb Infect Dis. 2003; 2004(27):319-30.
- [7]Nicholson GM. Fighting the global pest problem: preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon. 2007; 49:413-22.
- [8]Reiter P. Oviposition, dispersal and survival in Aedes aegypti: Implications for the efficacy of control strategies. Vector-Borne Zoonot. 2007; 7:261-74.
- [9]Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC. Pathways of expansion and multipleintroductionsillustrated by largegeneticdifferentiation among worldwidepopulations of the southernhousemosquito. Am J Trop Med Hyg. 2006; 74:284-289.
- [10]Breman JG, Egan A, Keusch GT. The intolerable burden of malaria: a new look at the numbers. Am J Trop Med Hyg. 2001; 64:iv-vii.
- [11]WHO - TDR. Planning meetings on Progress and Prospects for the Use of Genetically Modified Mosquitoes to Prevent Disease Transmission: Meeting 1. Technical Consultations on the Current Status and Planning for Future Development. 2009.
- [12]Mairiang D, Zhang H, Sodja A, Murali T, Suriyaphol P, Malasit P, Limjindaporn T, Finley RL. Identification of New Protein Interactions between DengueFever Virus and Its Hosts, Human and Mosquito. PLoS One. 2013; 8: Article ID e53535
- [13]Forattini OP. Culicidologia médica. EDUSP, São Paulo; 2002.
- [14]Pidiyar VJ, Jangid K, Patole MS, Shouche YS. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. Am J Trop Med Hyg. 2004; 70:597-603.
- [15]Fontes G, Brito AC, Calheiros CML, Antunes CMF, Rocha EMM. Situação Atual da Filariose Bancroftiana na Cidade de Maceió, Estado de Alagoas, Brasil. Cad Saúde Públ. 1994; 10:293-300.
- [16]Huhn GD, Sejvar JJ, Montgomery SP, Dworkin MS. West Nile Virus in the United States: an update on an emerging infectious disease. Am Fam Physician. 2003; 68:653-660.
- [17]Knipling E. Possibilities of insect control or eradication through use of sexually sterile males. J Econ Entomol. 1955; 48:459-62.
- [18]Besansky NJ, Collins FH. The mosquito genome: organization, evolution and manipulation. Parasitol Today. 1992; 8:186-192.
- [19]Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue virus. Nat Med. 2004; 10:98-109.
- [20]Pates H, Curtis CF. Mosquito behavior and vector control. Annu Rev Entomol. 2005; 50:53-70.
- [21]Vreysen M, Robinson AS, Hendrichs J. Area-Wide Control of Insect Pests: From Research to Field Implementation. Springer, The Netherlands; 2007.
- [22]Axtell RC, Arends JJ. Ecology and Management of Arthropod Pests of Poultry. Annu Rev Entomol. 1990; 35:101-126.
- [23]Bracco JE, Dalbon M, Marinotti O, Barata JM. Resistance to organophosphorous and carbamates insecticides in a population of Culex quinquefasciatus. Rev Saude Publica. 1997; 31:182-183.
- [24]Pocquet N, Milesi P, Makoundou P, Unal S, Zumbo B, Atyame C, Darriet F, Dehecq JS, Thiria J, Bheecarry A, Iyaloo DP, Weill M, Chandre F, Labbé P. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean. PLoS One. 2013; 21: Article ID e77855
- [25]Govindarajan M, Sivakumar R. Larvicidal, ovicidal, and adulticidal efficacy of Erythrina indica (Lam.) (Family: Fabaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2014; 113:777-791.
- [26]Taipe-Lagos CB, Natal D. Abundância de culicídeos em área metropolitana Preservada e suas Implicações Epidemiológicas. Rev Saude Publica. 2003; 37:275-9.
- [27]Natal D, Araújo FAA, Vianna RST, Pereira LE, Ueno HM. O mosquito das águas poluídas. Saneas, São Paulo; 2004.
- [28]Cardoso JC, Corseuil E, Barata JMS. Culicinae (Diptera, Culicidae) ocorrentes no Estado do Rio Grande do Sul, Brasil. Rev Bras Entomol. 2005; 49:275-287.
- [29]Curtis CF. A possible genetic method for the control of insect pests, with special reference to tsetse flies. Bull Entomol Res. 1968; 57:509-23.
- [30]Jasinskiene N, Coleman J, Ashikyan A, Salampessy M, Marinotti O, James AA. Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system. Am J Trop Med Hyg. 2007; 76:1072-1078.
- [31]Wilke AB, Marrelli MT. Genetic control of mosquitoes: populationsuppressionstrategies. Rev Inst Med Trop Sao Paulo. 2012; 54:287-92.
- [32]Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M. Robustgut-specificgeneexpression in transgenic Aedesaegypti mosquitoes. Proc Natl Acad Sci U S A. 2000; 97:10895-8.
- [33]Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002; 417:452-5.
- [34]Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD, O'Brochta DA. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J Med Entomol. 2004; 41:447-55.
- [35]Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A. 2006; 103:4198-203.
- [36]Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abrahan EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M. Bee venom phospholipase Inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem. 2002; 277:40839-40843.
- [37]Isaacs AT, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O, Vinetz JM, James AA. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 2011; 7:e1002017.
- [38]Meredith JM, Basu S, Nimmo DD, Larget-Thiery I, Warr EL, Underhill A, McArthur CC, Carter V, Hurd H, Bourgouin C, Eggleston P. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS One. 2011; 6: Article ID e14587
- [39]Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003; 19:349-55.
- [40]Heinrich JC, Scott MJ. A repressible female-specific lethal genetic system for making transgenic insect suitable for a sterile-release program. Proc Natl Acad Sci U S A. 2000; 97:8229-8232.
- [41]Thomas DD, Donnelly CA, Wood RJ, Alphey L. Insect Population Control Using a Dominant, Repressible, Lethal genetic Sistem. Science. 2000; 287:2474-2476.
- [42]Coleman PG, Alphey L. Genetic control of vector populations: an imminent prospect. Trop Med Int Health. 2004; 9:433-437.
- [43]Fortini M, Simon M, Rubin G. Signalling by the sevenless protein tyrosine kinase is mimicked by Ras1 activation. Nature. 1992; 355:559-561.
- [44]Alphey L. Re-engineering the sterile insect technique. Insect Biochem Mol Biol. 2002; 32:1243-7.
- [45]Riehle MA, Jacobs-Lorena M. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem Mol Biol. 2005; 35:699-707.
- [46]Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007; 37:595-603.
- [47]Beard CB, Mason PW, Aksoy S, Tesh RB, Richards FF. Transformation of an insect symbiont and expression of a foreign gene in the Chagas disease vector Rhodnius prolixus. Am J Trop Med Hyg. 1992; 46:195-200.
- [48]Beard CB, O’Neill SL, Tesh RB, Richards FF, Aksoy S. Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today. 1993; 9:179-183.
- [49]Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012; 121:129-34.
- [50]Conte JE. A novel approach to preventing insect-borne diseases. N Engl J Med. 1997; 337:785-6.
- [51]Beard CB, Cordon-Rosales C, Durvasula RV. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol. 2002; 47:123-141.
- [52]Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D. Bacteria of the genus Asaiastably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A. 2007; 104:9047-51.
- [53]Yoshida S, Ioka D, Matsuoka H, Endo H, Ishii A. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol. 2001; 113:89-96.
- [54]Aksoy S, Weiss B, Attardo G. Paratransgenesis applied for control of tsetse transmitted sleeping sickness. Adv Exp Med Biol. 2008; 627:35-48.
- [55]Coutinho-Abreu IV, Zhu KY, Ramalho-Ortigao M. Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. ParasitolInt. 2009; 59:1-8.
- [56]Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg. 1996; 54:214-8.
- [57]Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003; 40:371-4.
- [58]Lindh JM, Terenius O, Faye I. 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol. 2005; 71:7217-23.
- [59]Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Esposito F, Bandi C, Daffonchio D, Favia G. Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008; 18:1087-8.
- [60]Terenius O, de Oliveira CD, Pinheiro WD, Tadei WP, James AA, Marinotti O. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes. J Med Entomol. 2008; 45:172-5.
- [61]Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 2009; 19:9-96.
- [62]Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R. Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg. 2008; 79:881-6.
- [63]Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: culicidae). Parasit Vectors. 2011; 14:4-105.
- [64]Sayler GS, Ripp S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol. 2000; 11:286-9.
- [65]Briones AM, Shililu J, Githure J, Novak R, Raskin L. Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. ISME J. 2008; 2:74-82.
- [66]Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A. 2012; 109:12734-9.
- [67]Dinparast DN, Jazayeri H, Raz A, Favia G, Ricci I, Zakeri S. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One. 2011; 6:e28484.
- [68]De Freece C, Damiani C, Valzano M, D'Amelio S, Cappelli A, Ricci I, Favia G. Detection and isolation of the α-proteobacterium Asaia in Culex mosquitoes. Med Vet Entomol. 2014; 28:438-42.
- [69]Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J Med Entomol. 1998; 35:222-6.
- [70]Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009; 5: Article ID e1000423
- [71]Thomas MB, Read AF. Can fungal biopesticides control malaria? Nat Rev Microbiol. 2007; 5:377-83.
- [72]Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011; 331:1074-7.
- [73]Laven H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature. 1967; 216:383-4.
- [74]Townson H. Wolbachia as a potentialtool for suppressing filarial transmission. Ann Trop Med Parasitol. 2002; 96:117-27.
- [75]Atyame CM, Pasteur N, Dumas E, Tortosa P, Tantely ML, Pocquet N, Licciardi S, Bheecarry A, Zumbo B, Weill M, Duron O. Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean. PLoS Negl Trop Dis. 2011; 5:e1440.
- [76]Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008; 6:741-51.
- [77]Calvitti M, Moretti R, Skidmore AR, Dobson SL. Wolbachia strain wPip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia-based suppression strategy against the disease vector Aedes albopictus. Parasit Vectors. 2012; 5:254.
- [78]Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011; 476:450-3.
- [79]Weiss BL, Mouchotte R, Rio RV, Wu YN, Wu Z, Heddi A, Aksoy S. Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. Appl Environ Microbiol. 2006; 72:7013-21.
- [80]Zimmer C. Wolbachia, a tale of sex and survival. Science. 2001; 292:1093-5.
- [81]Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O'Neill SL. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol. 1999; 29:153-60.
- [82]Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009; 139:1268-78.
- [83]Baldini F, Segata N, Pompon J, Marcenac P, Robert Shaw W, Dabiré RK, Diabaté A, Levashina EA, Catteruccia F. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun. 2014; 5:3985.
- [84]Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, Patt AA, Cui L, Nossa CW, Barry RM, Sakamoto JM, Hornett EA, Rasgon JL. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci U S A. 2014; 111:12498-503.
- [85]Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013; 340:748-51.
- [86]Dodson BL, Hughes GL, Paul O, Matacchiero AC, Kramer LD, Rasgon JL. Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis. 2014; 10:e2965.
- [87]Richins RD, Kaneva I, Mulchandani A, Chen W. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol. 1997; 15:984-7.
- [88]Paula AR, Carolino AT, Silva CP, Samuels RI. Susceptibility of adult females Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasit Vectors. 2011; 2011(4):2-7.
- [89]Paula AR, Carolino AT, Paula CO, Samuels RI. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit Vectors. 2011; 4:8.
- [90]Carballar-Lejarazú R, Rodríguez MH, de la Cruz Hernández-Hernández F, Ramos-Castañeda J, Possani LD, Zurita-Ortega M, Reynaud-Garza E, Hernández-Rivas R, Loukeris T, Lycett G, Lanz-Mendoza H. Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci. 2008; 65:3081-92.
- [91]Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS, Cordon-Rosales C, Richards FF, Whitham RG, Beard CB. Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Med Vet Entomol. 1999; 13:115-9.
- [92]Bisi DC, Lampe DJ. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol. 2011; 77:4669-75.
- [93]De Vooght L, Caljon G, Stijlemans B, De Baetselier P, Coosemans M, Van den Abbeele J. Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb Cell Fact. 2012; 15:11-23.
- [94]Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, James AA. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci U S A. 2012; 109:e1922-30.
- [95]Panel on Genetically Modified Organisms (GMO) - Guidance on the environmental risk assessment of genetically modified animals. 2013.
- [96]Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A. 1997; 94:3274-8.
- [97]Della Torre A, Costantini C, Besansky NJ, Caccone A, Petrarca V, Powell JR, Coluzzi M. Speciation within Anopheles gambiae--the glass is half full. Science. 2002; 298:115-7.
- [98]Coetzee M. Distribution of the African malaria vectors of the Anopheles gambiae complex. Am J Trop Med Hyg. 2004; 70:103-4.
- [99]Allen ML, O'Brochta DA, Atkinson PW, Levesque CS. Stable, germ-line transformation of Culexquinquefasciatus (Diptera: Culicidae). J Med Entomol. 2001; 38:701-710.
- [100]Allen ML, Christense BM. Flight muscle-specific expression of act88F: GFP in transgenic Culex quinquefasciatus Say (Diptera: culicidae). Parasitol Int. 2004; 53:307-314.
- [101]Miller LH, Sakai RK, Romans P, Gwadz RW, Kantoff P, Coon HG. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science. 1987; 237:779-781.
- [102]Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH. Stable transformation of the yellow fever mosquito, Aedesaegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A. 1998; 95:3743-3747.
- [103]Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A. Stable germline transformation of the malaria mosquito Anophelesstephensi. Nature. 2000; 405:959-962.
- [104]Labbé GM, Nimmo DD, Alphey L. Piggybac and PhiC31 mediated genetic transformation of the Asian tiger mosquito, Aedesalbopictus(Skuse). PLoS Negl Trop Dis. 2010; 17:4-8.
- [105]Rodrigues FG, Oliveira SB, Rocha BC, Moreira LA. Germline transformation of Aedesfluviatilis (Diptera:Culicidae) with the piggyBac transposable element. Mem Inst Oswaldo Cruz. 2006; 101:755-7.