期刊论文详细信息
Retrovirology
Human and murine APOBEC3s restrict replication of koala retrovirus by different mechanisms
Hung Fan1  Takayuki Miyazawa2  Felipe Galvez1  Dat Ha1  Takayuki Nitta3 
[1] Cancer Research Institute, University of California, Irvine, Irvine 92697-3905, CA, USA;Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan;Department of Biology, Savannah State University, 3219 College St, Savannah 31404-5254, GA, USA
关键词: Glyco-gag;    APOBEC3;    KoRV;   
Others  :  1223838
DOI  :  10.1186/s12977-015-0193-1
 received in 2015-02-17, accepted in 2015-07-23,  发布年份 2015
PDF
【 摘 要 】

Background

Koala retrovirus (KoRV) is an endogenous and exogenous retrovirus of koalas that may cause lymphoma. As for many other gammaretroviruses, the KoRV genome can potentially encode an alternate form of Gag protein, glyco-gag.

Results

In this study, a convenient assay for assessing KoRV infectivity in vitro was employed: the use of DERSE cells (initially developed to search for infectious xenotropic murine leukemia-like viruses). Using infection of DERSE and other human cell lines (HEK293T), no evidence for expression of glyco-gag by KoRV was found, either in expression of glyco-gag protein or changes in infectivity when the putative glyco-gag reading frame was mutated. Since glyco-gag mediates resistance of Moloney murine leukemia virus to the restriction factor APOBEC3, the sensitivity of KoRV (wt or putatively mutant for glyco-gag) to restriction by murine (mA3) or human APOBEC3s was investigated. Both mA3 and hA3G potently inhibited KoRV infectivity. Interestingly, hA3G restriction was accompanied by extensive G → A hypermutation during reverse transcription while mA3 restriction was not. Glyco-gag status did not affect the results.

Conclusions

These results indicate that the mechanisms of APOBEC3 restriction of KoRV by hA3G and mA3 differ (deamination dependent vs. independent) and glyco-gag does not play a role in the restriction.

【 授权许可】

   
2015 Nitta et al.

【 预 览 】
附件列表
Files Size Format View
20150905090416108.pdf 1469KB PDF download
Fig.6. 33KB Image download
Fig.5. 53KB Image download
Fig.4. 28KB Image download
Fig.3. 75KB Image download
Fig.2. 16KB Image download
Fig.1. 25KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol. 2000; 74:4264-4272.
  • [2]Ishida Y, Zhao K, Greenwood AD, Roca AL. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion. Mol Biol Evol. 2015; 32:109-120.
  • [3]Tarlinton RE, Meers J, Young PR. Retroviral invasion of the koala genome. Nature. 2006; 442:79-81.
  • [4]Meers J, Simmons G, Jones K, Clarke DTW, Young PR. Koala Retrovirus in Free-Ranging Populations—Prevalence. Tech Rep Aust Mus (online). 2014; 24:15-17.
  • [5]Oliveira NM, Farrell KB, Eiden MV. In vitro characterization of a koala retrovirus. J Virol. 2006; 80:3104-3107.
  • [6]Miyazawa T, Shojima T, Yoshikawa R, Ohata T. Isolation of koala retroviruses from koalas in Japan. J Vet Med Sci. 2011; 73:65-70.
  • [7]Xu W, Stadler CK, Gorman K, Jensen N, Kim D, Zheng H et al.. An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. Proc Natl Acad Sci USA. 2013; 110:11547-11552.
  • [8]Prats AC, De Billy G, Wang P, Darlix JL. CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. J Mol Biol. 1989; 205:363-372.
  • [9]Edwards SA, Fan H. gag-Related polyproteins of Moloney murine leukemia virus: evidence for independent synthesis of glycosylated and unglycosylated forms. J Virol. 1979; 30:551-563.
  • [10]Buetti E, Diggelmann H. Murine leukemia virus proteins expressed on the surface of infected cells in culture. J Virol. 1980; 33:936-944.
  • [11]Nitta T, Kuznetsov Y, McPherson A, Fan H. Murine leukemia virus glycosylated Gag (gPr80gag) facilitates interferon-sensitive virus release through lipid rafts. Proc Natl Acad Sci USA. 2010; 107:1190-1195.
  • [12]Stavrou S, Nitta T, Kotla S, Ha D, Nagashima K, Rein AR et al.. Murine leukemia virus glycosylated Gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc Natl Acad Sci USA. 2013; 110:9078-9083.
  • [13]Nitta T, Lee S, Ha D, Arias M, Kozak CA, Fan H. Moloney murine leukemia virus glyco-gag facilitates xenotropic murine leukemia virus-related virus replication through human APOBEC3-independent mechanisms. Retrovirology. 2012; 9:58. BioMed Central Full Text
  • [14]Shojima T, Hoshino S, Abe M, Yasuda J, Shogen H, Kobayashi T et al.. Construction and characterization of an infectious molecular clone of Koala retrovirus. J Virol. 2013; 87:5081-5088.
  • [15]Stoye JP, Silverman RH, Boucher CA, Le Grice SF. The xenotropic murine leukemia virus-related retrovirus debate continues at first international workshop. Retrovirology. 2010; 7:113. BioMed Central Full Text
  • [16]Paprotka T, Delviks-Frankenberry KA, Cingoz O, Martinez A, Kung HJ, Tepper CG et al.. Recombinant origin of the retrovirus XMRV. Science. 2011; 333:97-101.
  • [17]Arias M, Fan H. The saga of XMRV: a virus that infects human cells but is not a human virus. Emerg Microbes Infect. 2014; 3:e25.
  • [18]Denner J, Young PR. Koala retroviruses: characterization and impact on the life of koalas. Retrovirology. 2013; 10:108. BioMed Central Full Text
  • [19]Kolokithas A, Rosenke K, Malik F, Hendrick D, Swanson L, Santiago ML et al.. The glycosylated Gag protein of a murine leukemia virus inhibits the antiretroviral function of APOBEC3. J Virol. 2010; 84:10933-10936.
  • [20]Wigler M, Sweet R, Sim GK, Wold B, Pellicer A, Lacy E et al.. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979; 16:777-785.
  • [21]Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology. 2008; 5:51. BioMed Central Full Text
  • [22]Nair S, Sanchez-Martinez S, Ji X, Rein A. Biochemical and biological studies of mouse APOBEC3. J Virol. 2014; 88:3850-3860.
  • [23]Sanchez-Martinez S, Aloia AL, Harvin D, Mirro J, Gorelick RJ, Jern P et al.. Studies on the restriction of murine leukemia viruses by mouse APOBEC3. PLoS One. 2012; 7:e38190.
  • [24]Browne EP, Littman DR. Species-specific restriction of apobec3-mediated hypermutation. J Virol. 2008; 82:1305-1313.
  • [25]Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol. 2004; 14:1392-1396.
  • [26]Langlois MA, Kemmerich K, Rada C, Neuberger MS. The AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. J Virol. 2009; 83:11550-11559.
  • [27]Paprotka T, Venkatachari NJ, Chaipan C, Burdick R, Delviks-Frankenberry KA, Hu WS et al.. Inhibition of xenotropic murine leukemia virus-related virus by APOBEC3 proteins and antiviral drugs. J Virol. 2010; 84:5719-5729.
  • [28]Grohman JK, Kottegoda S, Gorelick RJ, Allbritton NL, Weeks KM. Femtomole SHAPE reveals regulatory structures in the authentic XMRV RNA genome. J Am Chem Soc. 2011; 133:20326-20334.
  • [29]Tung JS, Yoshiki T, Fleissner E. A core polyprotein of murine leukemia virus on the surface of mouse leukemia cells. Cell. 1976; 9:573-578.
  • [30]Low A, Datta S, Kuznetsov Y, Jahid S, Kothari N, McPherson A et al.. Mutation in the glycosylated gag protein of murine leukemia virus results in reduced in vivo infectivity and a novel defect in viral budding or release. J Virol. 2007; 81:3685-3692.
  • [31]Pizzato M. MLV glycosylated-Gag is an infectivity factor that rescues Nef-deficient HIV-1. Proc Natl Acad Sci USA. 2010; 107:9364-9369.
  • [32]Usami Y, Popov S, Gottlinger HG. The Nef-like effect of murine leukemia virus glycosylated gag on HIV-1 infectivity is mediated by its cytoplasmic domain and depends on the AP-2 adaptor complex. J Virol. 2014; 88:3443-3454.
  • [33]Lai RP, Yan J, Heeney J, McClure MO, Gottlinger H, Luban J et al.. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41. PLoS Pathog. 2011; 7:e1002442.
  • [34]Jern P, Sperber GO, Ahlsen G, Blomberg J. Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. J Virol. 2005; 79:6325-6337.
  • [35]Tarlinton R, Meers J, Young P. Biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci. 2008; 65:3413-3421.
  • [36]Jern P, Stoye JP, Coffin JM. Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses. PLoS Genet. 2007; 3:2014-2022.
  • [37]RosalesGerpe MC, Renner TM, Belanger K, Lam C, Aydin H, Langlois MA. N-linked glycosylation protects gammaretroviruses against deamination by APOBEC3 Proteins. J Virol. 2015; 89:2342-2357.
  • [38]Koito A, Ikeda T. Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases. Front Microbiol. 2013; 4:28.
  • [39]Xu W, Stoye JP. Koala Retrovirus (KoRV): are humans at risk of infection? Tech Rep Aust Mus Online. 2014; 24:99-101.
  • [40]Stieler K, Fischer N. Apobec 3G efficiently reduces infectivity of the human exogenous gammaretrovirus XMRV. PLoS One. 2010; 5:e11738.
  • [41]Chaipan C, Dilley KA, Paprotka T, Delviks-Frankenberry KA, Venkatachari NJ, Hu WS et al.. Severe restriction of xenotropic murine leukemia virus-related virus replication and spread in cultured human peripheral blood mononuclear cells. J Virol. 2011; 85:4888-4897.
  • [42]DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP. Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol. 1987; 7:379-387.
  • [43]Kearney MF, Lee K, Bagni RK, Wiegand A, Spindler J, Maldarelli F et al.. Nucleic acid, antibody, and virus culture methods to detect xenotropic MLV-related virus in human blood samples. Adv Virol. 2011; 2011:272193.
  • [44]Fan H, Chute H, Chao E, Feuerman M. Construction and characterization of Moloney murine leukemia virus mutants unable to synthesize glycosylated gag polyprotein. Proc Natl Acad Sci USA. 1983; 80:5965-5969.
  • [45]Edelheit O, Hanukoglu A, Hanukoglu I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 2009; 9:61. BioMed Central Full Text
  • [46]Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 2004; 78:6073-6076.
  • [47]Mueller-Lantzsch N, Fan H. Monospecific immunoprecipitation of murine leukemia virus polyribosomes: identification of p30 protein-specific messenger RNA. Cell. 1976; 9:579-588.
  • [48]Fujisawa R, McAtee FJ, Zirbel JH, Portis JL. Characterization of glycosylated Gag expressed by a neurovirulent murine leukemia virus: identification of differences in processing in vitro and in vivo. J Virol. 1997; 71:5355-5360.
  文献评价指标  
  下载次数:30次 浏览次数:4次