期刊论文详细信息
Particle and Fibre Toxicology
Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia
Charles S Wondji2  Hilary Ranson2  Zairi Jaal1  Intan H Ishak1 
[1] School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia;Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
关键词: Knockdown resistance;    Insecticide resistance;    Aedes albopictus;    Aedes aegypti;    Dengue;   
Others  :  1146221
DOI  :  10.1186/s13071-015-0797-2
 received in 2015-01-12, accepted in 2015-03-11,  发布年份 2015
PDF
【 摘 要 】

Background

Knowledge on the extent, distribution and mechanisms of insecticide resistance is essential for successful insecticide-based dengue control interventions. Here, we report an extensive resistance profiling of the dengue vectors Aedes aegypti and Aedes albopictus across Malaysia and establish the contribution of knockdown resistance mechanism revealing significant contrast between both species.

Methods

Aedes mosquitoes were collected from four states in Malaysia in 2010 using ovitraps and tested against six major insecticides using WHO bioassays. Knockdown resistance (kdr) was investigated in both species.

Results

A moderate resistance to temephos was detected from samples collected in 2010 in Penang, Kuala Lumpur, Johor Bharu and Kota Bharu (1.5 < RR < 3.3). A widespread and multiple resistances was observed in Ae. aegypti particularly against pyrethroids, DDT and bendiocarb. Mosquitoes from Kuala Lumpur consistently had the highest resistance levels and was the only population showing a moderate resistance to malathion (91% mortality). The resistance profile of Ae. albopictus contrasted to Ae. aegypti with full susceptibility to pyrethroids except in Kuala Lumpur where moderate resistance is observed. PBO synergist assays suggest metabolic resistance mechanisms play a major role in resistance in both species. Two kdr mutations, F1534C and V1016G, were detected in Ae. aegypti across Malaysia but neither of these mutations were found in Ae. albopictus. Additionally, signatures of selection were detected on the Voltage-gated sodium channel gene in Ae. aegypti but not in Ae. albopictus. The presence of the 1534C allele was significantly associated with pyrethroid resistance and an additive effect to pyrethroid resistance was observed in individuals containing both kdr alleles.

Conclusions

Findings from this study will help to design and implement successful insecticide-based interventions against Ae. aegypti and Ae. albopictus to improve dengue control across Malaysia.

【 授权许可】

   
2015 Ishak et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403100705694.pdf 1902KB PDF download
Figure 6. 30KB Image download
Figure 5. 51KB Image download
Figure 4. 29KB Image download
Figure 3. 52KB Image download
Figure 2. 59KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Atlas of health and climate. World Health Organization and World Meteorological Organization, Geneva, Switzerland; 2012.
  • [2]Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al.. The global distribution and burden of dengue. Nature. 2013; 496(7446):504-7.
  • [3]Ministry of Health Annual Report 2011. Ministry of Health Malaysia, Kuala Lumpur; 2011.
  • [4]Lo EKC, Narimah A. Epidemiology of dengue disease in Malaysia. J Malays Soc Health. 1984; 4(1):27-35.
  • [5]Yap HH, Chong NL, Foo AE, Lee CY. Vector control in Malaysia – present status and future prospects. J Malays Soc Health. 1984; 4(1):7-12.
  • [6]Chen CD, Saleena B, Nazni WA, Lee HL, Masir SM, Chiang FF et al.. Dengue vector surveillance in endemic areas in Kuala Lumpur City Centre and Selangor State, Malaysia. Dengue Bullet. 2006; 30:197-203.
  • [7]Rohani A, Suzilah I, Malinda M, Anuar I, Mohd Mazlan I, Salmah Maszaitun M et al.. Aedes larval population dynamics and risk for dengue epidemics in Malaysia. Trop Biomed. 2011; 28(2):237-48.
  • [8]Ranson H, Burhani J, Lumjuan N, Black WC. Insecticide resistance in dengue vectors Review. TropIKAnet. 2010; 1:1-12.
  • [9]Nazni WA, Selvi S, Lee HL, Sa’diyah I, Azhari H, Derric N et al.. Susceptibility status of transgenic Aedes aegypti (L.) against insecticides. Dengue Bullet. 2009; 30:124-9.
  • [10]Chan HH, Mustafa FFW, Zairi J. Assessing the susceptibility status of Aedes albopictus on Penang Island using two different assays. Trop Biomed. 2011; 28(2):464-70.
  • [11]Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Ann rev entomol. 2000; 45:369-89.
  • [12]Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P et al.. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol. 2003; 17(1):87-94.
  • [13]Harris AF, Rajatileka S, Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg. 2010; 83(2):277-84.
  • [14]Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I et al.. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007; 16(6):785-98.
  • [15]Kawada H, Oo SZ, Thaung S, Kawashima E, Maung YN, Thu HM et al.. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant aedes aegypti populations in Myanmar. PLoS Negl Trop Dis. 2014; 8(7):e3032.
  • [16]Yanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara L-a. High-throughput assays for detection of the F1534C mutation in the voltage-gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand. Trop Med Int Health. 2011; 16(4):501-9.
  • [17]Kawada H, Higa Y, Komagata O, Kasai S, Tomita T, Thi Yen N et al.. Widespread distribution of a newly found point mutation in voltage-gated sodium channel in pyrethroid-resistant Aedes aegypti populations in Vietnam. PLoS Negl Trop Dis. 2009; 3(10):e527.
  • [18]Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O et al.. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. J J inf dis. 2011; 64(3):217-21.
  • [19]WHO. Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization 2005. WHO/CDS/WHOPES/GCDPP/2005.13.
  • [20]Test procedures for insecticide resistance montoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. World Health Organization, Geneva, Switzerland; 1998.
  • [21]Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD et al.. A single mutation in the GSTe2 gene allows tracking of metabolically-based insecticide resistance in a major malaria vector. Genome Biol. 2014; 15(2):R27. BioMed Central Full Text
  • [22]Mulamba C, Irving H, Riveron JM, Mukwaya LG, Birungi J, Wondji CS. Contrasting Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling species Anopheles parensis and Anopheles funestus s.s: a potential challenge for malaria vector control in Uganda. Parasit Vectors. 2014; 7:71. BioMed Central Full Text
  • [23]Livak KJ. Organization and mapping of a sequence on the drosophila-melanogaster x-chromosome and y-chromosome that is transcribed during spermatogenesis. Genetics. 1984; 107(4):611-34.
  • [24]Wondji CS, Priyanka De Silva WA, Hemingway J, Ranson H, Parakrama Karunaratne SH. Characterization of knockdown resistance in DDT- and pyrethroid-resistant Culex quinquefasciatus populations from Sri Lanka. Trop Med Int Health. 2008; 13(4):548-55.
  • [25]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673-80.
  • [26]Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25(11):1451-2.
  • [27]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731-9.
  • [28]Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000; 9(10):1657-9.
  • [29]WHO. Vector resistance to pesticides. WHO/TRS/818 1992.
  • [30]WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization. 2013.
  • [31]Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pest Biochem Physiol. 2012; 104(2):126-31.
  • [32]Ang KT, Satwant S. Epidemiology and new Initiatives in the prevention and control of dengue in Malaysia. Dengue Bullet. 2001; 25:7-14.
  • [33]Chen CD, Nazni WA, Lee HL, Sofian-Azirun M. Susceptibility of Aedes aegypti and Aedes albopictus to temephos in four study sites in Kuala Lumpur City Center and Selangor State. Malaysia Trop Biomed. 2005; 22(2):207-16.
  • [34]Ibrahim MS. Persistent Organic Pollutants in Malaysia. In: Developments in Environmental Science. KSL P, editor. Elsevier, The Netherlands; 2007: p.629-55.
  • [35]Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG et al.. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A. 2012; 109(16):6147-52.
  • [36]Chen CD, Nazni WA, Lee HL, Norma-Rashid Y, Lardizabal ML, Sofian-Azirun M. Temephos resistance in field Aedes (Stegomyia) albopictus (Skuse) from Selangor, Malaysia. Trop Biomed. 2013; 30(2):220-30.
  • [37]Paeporn P, Ya-umphan P, Suphapathom K, Savanpanyalert P, Wattanachai P, Patimaprakorn R. Insecticide susceptibility and selection for resistance in a population of Aedes aegypti from ratchaburi province, Thailand. Trop Biomed. 2004; 21(2):1-6.
  • [38]Poupardin R, Srisukontarat W, Yunta C, Ranson H. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl Trop Dis. 2014; 8(3):e2743.
  • [39]Ponlawat A, Scott JG, Harrington LC. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol. 2005; 42(5):821-5.
  • [40]Stenhouse SA, Plernsub S, Yanola J, Lumjuan N, Dantrakool A, Choochote W et al.. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors. 2013; 6(1):253. BioMed Central Full Text
  • [41]Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY et al.. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci U S A. 2013; 110(29):11785-90.
  • [42]Pinto J, Lynd A, Vicente JL, Santolamazza F, Randle NP, Caccone A et al.. Origins and distribution of knockdown resistance mutations in the afrotropical osquito vector Anopheles gambiae. PLoS One. 2007; 11:e1243.
  • [43]Chang C, Shen WK, Wang TT, Lin YH, Hsu EL, Dai SM. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochem Molec. 2009; 39(4):272-8.
  • [44]Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ et al.. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A. 2012; 109(17):6614-9.
  • [45]Martins AJ, Brito LP, Linss JG, Rivas GB, Machado R, Bruno RV et al.. Evidence for gene duplication in the voltage-gated sodium channel gene of Aedes aegypti. Evol Med Pubhealth. 2013; 2013(1):148-60.
  • [46]Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, Rutee A et al.. Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Reunion Island. Insect Biochem Molec. 2010; 40(4):317-24.
  • [47]Liu N, Xu Q, Zhang L. Sodium channel gene expression in mosquitoes, Aedes albopictus (S). Ins Sci Applic. 2006; 13:431-6.
  • [48]Djouaka R, Irving H, Tukur Z, Wondji C. Exploring mechanisms of multiple insecticide resistance in a population of the malaria vector Anopheles funestus in Benin. Plos One. 2011; 6:e27760.
  • [49]Morgan J, Irving H, Okedi L, Steven A, Wondji C. Pyrethroid resistance in an Anopheles funestus population from Uganda. Plos One. 2010; 5:e11872.
  • [50]Lumjuan N, Wicheer J, Leelapat P, Choochote W, Somboon P. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism. PLoS One. 2014; 9(7):e102746.
  • [51]Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H. Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector. Aedes Aegypti PLoS Negl Trop Dis. 2012; 6(6):e1692.
  • [52]Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR et al.. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 2008; 38(1):113-23.
  文献评价指标  
  下载次数:45次 浏览次数:20次