期刊论文详细信息
Retrovirology
Potent restriction of HIV-1 and SIVmac239 Replication by African Green Monkey TRIM5α
David E Ott1  Claes Ohlen1  Gregory Q Del Prete1  Victor I Ayala1  Sumiti Jain1  Matthew T Trivett1  Lori V Coren1 
[1] AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick 21702, MD, USA
关键词: Cumulative restriction;    Restriction factor;    TRIM5α;    SIV;    HIV;   
Others  :  1131915
DOI  :  10.1186/s12977-015-0137-9
 received in 2014-10-16, accepted in 2015-01-08,  发布年份 2015
PDF
【 摘 要 】

Background

The TRIM5α protein is a principal restriction factor that contributes to an HIV-1 replication block in rhesus macaque CD4+ T cells by preventing reverse transcription. HIV-1 restriction is induced in human CD4+ T cells by expression of rhesus TRIM5α as well as those of other old world monkeys. While TRIM5α restriction has been extensively studied in single-round infection assays, fewer studies have examined restriction after extended viral replication.

Results

To examine TRIM5α restriction of replication, we studied the ability of TRIM5α proteins from African green monkey (AgmTRIM5α) and gorilla (gorTRIM5α) to restrict HIV-1 and SIVmac239 replication. These xenogeneic TRIM5α genes were transduced into human Jurkat-CCR5 cells (JR5), which were then exposed to HIV-1 or SIVmac239. In our single-round infection assays, AgmTRIM5α showed a relatively modest 4- to 10-fold restriction of HIV-1 and SIVmac239, while gorTRIM5α produced a 2- and 3-fold restriction of HIV-1 and SIVmac239, respectively, consistent with the majority of previously published single-round studies. To assess the impact of these modest effects on infection, we tested restriction in replication systems initiated with either cell-free or cell-to-cell challenges. AgmTRIM5α powerfully restricted both HIV-1 and SIVmac239 replication 14 days after cell-free infection, with a ≥ 3-log effect. Moreover, expression of AgmTRIM5α restricted HIV-1 and SIVmac239 replication by 2-logs when co-cultured with infected JR5 cells for 12 days. In contrast, neither expression of gorTRIM5α nor rhesus TRIM5α induced significant resistance when co-cultured with infected cells. Follow up experiments showed that the observed differences between replication and infection were not due to assembly defects as xenogeneic TRIM5α expression had no effect on either virion production or specific infectivity.

Conclusions

Our results indicate that AgmTRIM5α has a much greater effect on extended replication than on any single infection event, suggesting that AgmTRIM5α restriction acts cumulatively, building up over many rounds of replication. Furthermore, AgmTRIM5α was able to potently restrict both HIV-1 and SIV replication in a cell-to-cell infection challenge. Thus, AgmTRIM5α is unique among the TRIM5α species tested to date, being able to restrict even at the high multiplicities of infection presented by mixed culture with nonrestrictive infected cells.

【 授权许可】

   
2015 Coren et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303115803309.pdf 3577KB PDF download
Figure 5. 76KB Image download
Figure 4. 76KB Image download
Figure 3. 72KB Image download
Figure 2. 47KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Greene WC, Debyser Z, Ikeda Y, Freed EO, Stephens E, Yonemoto W, et al.: Novel targets for HIV therapy. Antiviral Res 2008, 80:251-65.
  • [2]Anderson J, Akkina R: Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum Gene Ther 2008, 19:217-28.
  • [3]Anderson JS: Using TRIM5alpha as an HIV therapeutic: the alpha gene? Expert Opin Biol Ther 2013, 13:1029-38.
  • [4]Chan E, Towers GJ, Qasim W: Gene therapy strategies to exploit TRIM derived restriction factors against HIV-1. Viruses 2014, 6:243-63.
  • [5]Sloan RD, Wainberg MA: Harnessing the therapeutic potential of host antiviral restriction factors that target HIV. Expert Rev Anti Infect Ther 2013, 11:1-4.
  • [6]Zhang J, Ge W, Zhan P, De Clercq E, Liu X: Retroviral restriction factors TRIM5alpha: therapeutic strategy to inhibit HIV-1 replication. Curr Med Chem 2011, 18:2649-54.
  • [7]Nakayama EE, Shioda T: Anti-retroviral activity of TRIM5 alpha. Rev Med Virol 2010, 20:77-92.
  • [8]Neagu MR, Ziegler P, Pertel T, Strambio-De-Castillia C, Grutter C, Martinetti G, et al.: Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J Clin Invest 2009, 119:3035-47.
  • [9]Stremlau M, Perron M, Welikala S, Sodroski J: Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 2005, 79:3139-45.
  • [10]Richardson MW, Guo L, Xin F, Yang X, Riley JL: Stabilized human TRIM5alpha protects human T cells from HIV-1 infection. Mol Ther 2014, 22:1084-95.
  • [11]Malim MH, Bieniasz PD: HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med 2012, 2:a006940.
  • [12]Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, et al.: The tripartite motif family identifies cell compartments. EMBO J 2001, 20:2140-51.
  • [13]Li X, Gold B, O’HUigin C, Diaz-Griffero F, Song B, Si Z, et al.: Unique features of TRIM5alpha among closely related human TRIM family members. Virology 2007, 360:419-33.
  • [14]Sastri J, Campbell EM: Recent insights into the mechanism and consequences of TRIM5alpha retroviral restriction. AIDS Res Hum Retroviruses 2011, 27:231-8.
  • [15]Gartner S, Liu Y, Polonis V, Lewis MG, Elkins WR, Hunter EA, et al.: Adaptation of HIV-1 to pigtailed macaques. J Med Primatol 1994, 23:155-63.
  • [16]Himathongkham S, Luciw PA: Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. Virology 1996, 219:485-8.
  • [17]Shibata R, Kawamura M, Sakai H, Hayami M, Ishimoto A, Adachi A: Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. J Virol 1991, 65:3514-20.
  • [18]Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004, 427:848-53.
  • [19]Owens CM, Song B, Perron MJ, Yang PC, Stremlau M, Sodroski J: Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J Virol 2004, 78:5423-37.
  • [20]Zhang F, Perez-Caballero D, Hatziioannou T, Bieniasz PD: No effect of endogenous TRIM5alpha on HIV-1 production. Nat Med 2008, 14:235-6. author reply 236-238
  • [21]Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD: Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci U S A 2004, 101:10774-9.
  • [22]Kratovac Z, Virgen CA, Bibollet-Ruche F, Hahn BH, Bieniasz PD, Hatziioannou T: Primate lentivirus capsid sensitivity to TRIM5 proteins. J Virol 2008, 82:6772-7.
  • [23]Keckesova Z, Ylinen LM, Towers GJ: The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci U S A 2004, 101:10780-5.
  • [24]Song B, Javanbakht H, Perron M, Park DH, Stremlau M, Sodroski J: Retrovirus restriction by TRIM5alpha variants from Old World and New World primates. J Virol 2005, 79:3930-7.
  • [25]Goldschmidt V, Ciuffi A, Ortiz M, Brawand D, Munoz M, Kaessmann H, et al.: Antiretroviral activity of ancestral TRIM5alpha. J Virol 2008, 82:2089-96.
  • [26]Yap MW, Nisole S, Lynch C, Stoye JP: Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 2004, 101:10786-91.
  • [27]Yap MW, Nisole S, Stoye JP: A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 2005, 15:73-8.
  • [28]Sawyer SL, Wu LI, Emerman M, Malik HS: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A 2005, 102:2832-7.
  • [29]Perez-Caballero D, Hatziioannou T, Yang A, Cowan S, Bieniasz PD: Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 2005, 79:8969-78.
  • [30]Nakayama EE, Miyoshi H, Nagai Y, Shioda T: A specific region of 37 amino acid residues in the SPRY (B30.2) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J Virol 2005, 79:8870-7.
  • [31]Maegawa H, Miyamoto T, Sakuragi J, Shioda T, Nakayama EE: Contribution of RING domain to retrovirus restriction by TRIM5alpha depends on combination of host and virus. Virology 2010, 399:212-20.
  • [32]Kim J, Tipper C, Sodroski J: Role of TRIM5alpha RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. J Virol 2011, 85:8116-32.
  • [33]Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J: The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem 2005, 280:26933-40.
  • [34]Diaz-Griffero F, Kar A, Lee M, Stremlau M, Poeschla E, Sodroski J: Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. Virology 2007, 369:400-10.
  • [35]Kutluay SB, Perez-Caballero D, Bieniasz PD: Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog 2013, 9:e1003214.
  • [36]Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ: Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci U S A 2006, 103:7465-70.
  • [37]Perez-Caballero D, Hatziioannou T, Zhang F, Cowan S, Bieniasz PD: Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. J Virol 2005, 79:15567-72.
  • [38]Sundquist WI, Krausslich HG: HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2012, 2:a006924.
  • [39]von Schwedler UK, Stray KM, Garrus JE, Sundquist WI: Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 2003, 77:5439-50.
  • [40]Forshey BM, von Schwedler U, Sundquist WI, Aiken C: Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 2002, 76:5667-77.
  • [41]Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M: Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci U S A 2011, 108:534-9.
  • [42]Shi J, Friedman DB, Aiken C: Retrovirus restriction by TRIM5 proteins requires recognition of only a small fraction of viral capsid subunits. J Virol 2013, 87:9271-8.
  • [43]Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, et al.: Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 2006, 103:5514-9.
  • [44]Perron MJ, Stremlau M, Lee M, Javanbakht H, Song B, Sodroski J: The human TRIM5alpha restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J Virol 2007, 81:2138-48.
  • [45]Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, et al.: RING domain mutations uncouple TRIM5alpha restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 2012, 86:1717-27.
  • [46]Danielson CM, Cianci GC, Hope TJ: Recruitment and dynamics of proteasome association with rhTRIM5alpha cytoplasmic complexes during HIV-1 infection. Traffic 2012, 13:1206-17.
  • [47]Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, et al.: TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011, 472:361-5.
  • [48]Richardson MW, Carroll RG, Stremlau M, Korokhov N, Humeau LM, Silvestri G, et al.: Mode of transmission affects the sensitivity of human immunodeficiency virus type 1 to restriction by rhesus TRIM5alpha. J Virol 2008, 82:11117-28.
  • [49]Sakuma R, Noser JA, Ohmine S, Ikeda Y: Inhibition of HIV-1 replication by simian restriction factors, TRIM5alpha and APOBEC3G. Gene Ther 2007, 14:185-9.
  • [50]Hatziioannou T, Evans DT: Animal models for HIV/AIDS research. Nat Rev Microbiol 2012, 10:852-67.
  • [51]Ohmine S, Sakuma R, Sakuma T, Thatava T, Takeuchi H, Ikeda Y: The antiviral spectra of TRIM5alpha orthologues and human TRIM family proteins against lentiviral production. PLoS One 2011, 6:e16121.
  • [52]Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W: TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 2008, 4:e16.
  • [53]Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, et al.: Real-time visualization of HIV-1 Gag trafficking in infected macrophages. PLoS Pathog 2008, 4:e1000015.
  • [54]Pearce-Pratt R, Malamud D, Phillips DM: Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus. J Virol 1994, 68:2898-905.
  • [55]Sattentau QJ: The direct passage of animal viruses between cells. Curr Opin Virol 2011, 1:396-402.
  • [56]Dimitrov DS, Willey RL, Sato H, Chang L-J, Blumenthal R, Martin MA: Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 1993, 67:2182-90.
  • [57]Carr JM, Hocking H, Li P, Burrell CJ: Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. Virology 1999, 265:319-29.
  • [58]Chen P, Hubner W, Spinelli MA, Chen BK: Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 2007, 81:12582-95.
  • [59]Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O: Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 2007, 81:1000-12.
  • [60]Zhong P, Agosto LM, Ilinskaya A, Dorjbal B, Truong R, Derse D, et al.: Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One 2013, 8:e53138.
  • [61]Martin N, Welsch S, Jolly C, Briggs JA, Vaux D, Sattentau QJ: Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol 2010, 84:3516-27.
  • [62]Sakuma R, Noser JA, Ohmine S, Ikeda Y: Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 2007, 13:631-5.
  • [63]Sakuma R, Ohmine S, Mael AA, Noser JA, Ikeda Y: Author reply to comment on Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 2008, 14:235-6.
  • [64]Ott DE, Nigida SM Jr, Henderson LE, Arthur LO: The majority of cells are superinfected in a cloned cell line that produces high levels of human immunodeficiency virus type 1 strain MN. J Virol 1995, 69:2443-50.
  • [65]Benveniste RE, Hill RW, Eron LJ, Csaikl UM, Knott WB, Henderson LE, et al.: Characterization of clones of HIV-1 infected HuT 78 cells defective in gag gene processing and of SIV clones producing large amounts of envelope glycoprotein. J Med Primatol 1990, 19:351-66.
  • [66]Ohkura S, Goldstone DC, Yap MW, Holden-Dye K, Taylor IA, Stoye JP: Novel escape mutants suggest an extensive TRIM5alpha binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLoS Pathog 2011, 7:e1002011.
  • [67]Ohkura S, Stoye JP: A comparison of murine leukemia viruses that escape from human and rhesus macaque TRIM5alphas. J Virol 2013, 87:6455-68.
  • [68]Shi J, Aiken C: Saturation of TRIM5 alpha-mediated restriction of HIV-1 infection depends on the stability of the incoming viral capsid. Virology 2006, 350:493-500.
  • [69]Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ: Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 2003, 22:385-94.
  • [70]Besnier C, Takeuchi Y, Towers G: Restriction of lentivirus in monkeys. Proc Natl Acad Sci U S A 2002, 99:11920-5.
  • [71]Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD: Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci U S A 2002, 99:11914-9.
  • [72]Layne SP, Merges MJ, Dembo M, Spouge JL, Conley SR, Moore JP, et al.: Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 1992, 189:695-714.
  • [73]Zhang B, Metharom P, Jullie H, Ellem KA, Cleghorn G, West MJ, et al.: The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genet Vaccines Ther 2004, 2:6. BioMed Central Full Text
  • [74]Shi J, Zhou J, Shah VB, Aiken C, Whitby K: Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 2010, 85:542-9.
  • [75]Neff T, Peterson LJ, Morris JC, Thompson J, Zhang X, Horn PA, et al.: Efficient gene transfer to hematopoietic repopulating cells using concentrated RD114-pseudotype vectors produced by human packaging cells. Mol Ther 2004, 9:157-9.
  • [76]Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al.: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002, 46:1896-905.
  • [77]Adachi A, Koenig S, Gendelman HE, Daugherty D, Gattoni-Celli S, Fauci AS, et al.: Productive, persistent infection of human colorectal cell lines with human immunodeficiency virus. J Virol 1987, 61:209-13.
  • [78]Kestler H, Kodama T, Ringler D, Marthas M, Pedersen N, Lackner A, et al.: Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. Science 1990, 248:1109-12.
  • [79]Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, et al.: Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 1991, 65:651-62.
  • [80]Minang JT, Trivett MT, Coren LV, Barsov EV, Piatak M Jr, Ott DE, et al.: Nef-mediated MHC class I down-regulation unmasks clonal differences in virus suppression by SIV-specific CD8+ T cells independent of IFN-gamma and CD107a responses. Virology 2009, 391:130-9.
  • [81]Soares MA, Robertson DL, Hui H, Allan JS, Shaw GM, Hahn BH: A full-length and replication-competent proviral clone of SIVAGM from tantalus monkeys. Virology 1997, 228:394-9.
  • [82]Morgenstern JP, Land H: A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res 1990, 18:1068.
  • [83]Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, et al.: Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 2000, 7:1613-23.
  • [84]Ott DE, Chertova EN, Busch LK, Coren LV, Gagliardi TD, Johnson DG: Mutational analysis of the hydrophobic tail of the human immunodeficiency virus type 1 p6(Gag) protein produces a mutant that fails to package its envelope protein. J Virol 1999, 73:19-28.
  • [85]Ott DE, Coren LV, Sowder RC II, Adams J, Nagashima K, Schubert U: Equine infectious anemia virus and the ubiquitin-proteasome system. J Virol 2002, 76:3038-44.
  • [86]Vazquez N, Greenwell-Wild T, Marinos NJ, Swaim WD, Nares S, Ott DE, et al.: Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol 2005, 79:4479-91.
  文献评价指标  
  下载次数:0次 浏览次数:5次