期刊论文详细信息
Stem Cell Research & Therapy
Nanochelating based nanocomplex, GFc7, improves quality and quantity of human mesenchymal stem cells during in vitro expansion
Masoud Soleimani3  Mohammad Hassan Nazaran2  Zahra Masoumi1  Saideh Fakharzadeh2  Somayeh Kalanaky2  Amir Atashi3  Atena Hajarizadeh1  Maryam Hafizi2 
[1] Stem Cell Technology Research Center, Tehran, Iran;Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran;Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
关键词: Nanochelating technology;    Nanocomplex;    Human mesenchymal stem cells;    GFc7;    Expansion;   
Others  :  1235101
DOI  :  10.1186/s13287-015-0216-9
 received in 2015-04-25, accepted in 2015-10-28,  发布年份 2015
PDF
【 摘 要 】

Introduction

Human mesenchymal stem cells (hMSCs) have been approved for therapeutic applications. Despite the advances in this field, in vitro approaches are still required to improve the essential indices that would pave the way to a bright horizon for an efficient transplantation in the future. Nanotechnology could help to improve these approaches. Studies signified the important role of iron in stem cell metabolism and efficiency of copper chelation application for stem cell expansion 

Methods

For the first time, based on novel Nanochelating technology, we design an iron containing copper chelator nano complex, GFc7 and examined on hMSCs during in vitro expansion. In this study, the hMSCs were isolated, characterized and expanded in vitro in two media (with or without GFc7). Then proliferation, cell viability, cell cycle analysis, surface markers, HLADR, pluripotency genes expression, homing and antioxidative defense at genes and protein expression were investigated. Also we analyzed the spontaneous differentiation and examined osteogenic and lipogenic differentiation. 

Results

GFc7 affected the expression of key genes, improving both the stemness and fitness of the cells in a precise and balanced manner. We observed significant increases in cell proliferation, enhanced expression of pluripotency genes and homing markers, improved antioxidative defense, repression of genes involved in spontaneous differentiation and exposing the hMSCs to differentiation medium indicated that pretreatment with GFc7 increased the quality and rate of differentiation.

Conclusions

Thus, GFc7 appears to be a potential new supplement for cell culture medium for increasing the efficiency of transplantation.

【 授权许可】

   
2015 Hafizi et al.

【 预 览 】
附件列表
Files Size Format View
20151231094010466.pdf 2366KB PDF download
Fig. 10. 98KB Image download
Fig. 9. 44KB Image download
Fig. 8. 24KB Image download
Fig. 7. 16KB Image download
Fig. 6. 34KB Image download
Fig. 5. 44KB Image download
Fig. 4. 46KB Image download
Fig. 3. 60KB Image download
Fig. 2. 55KB Image download
Fig. 1. 56KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Xu X, Kratz K, Wang W, Li Z, Roch T, Jung F, et al.: Cultivation and spontaneous differentiation of rat bone marrow-derived mesenchymal stem cells on polymeric surfaces. Clin Hemorheol Microcirc 2013, 55(1):143-156.
  • [2]Daley GQ, Scadden DT: Prospects for stem cell-based therapy. Cell 2008, 132(4):544-548.
  • [3]Orza A, Soritau O, Olenic L, Diudea M, Florea A, Rus Ciuca D, et al.: Electrically conductive gold-coated collagen nanofibers for placental-derived mesenchymal stem cells enhanced differentiation and proliferation. ACS Nano 2011, 5(6):4490-4503.
  • [4]Liu D, Yi C, Zhang D, Zhang J, Yang M: Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano 2010, 4(4):2185-2195.
  • [5]Yazdani SO, Hafizi M, Zali AR, Atashi A, Ashrafi F, Seddighi AS, et al.: Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy 2013, 15(7):782-791.
  • [6]Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S: Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc 2009, 84(10):893-902.
  • [7]Liu XB, Jiang J, Gui C, Hu XY, Xiang MX, Wang JA: Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta Pharmacol Sin 2008, 29(7):815-822.
  • [8]Mohammadzadeh M, Halabian R, Gharehbaghian A, Amirizadeh N, Jahanian-Najafabadi A, Roushandeh AM, et al.: Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity. Cell Stress Chaperones 2012, 17(5):553-565.
  • [9]Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimoghaddom K, Talebian F, Hooshmand F, et al.: Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007, 4(1):50-57.
  • [10]Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, et al.: Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 2010, 155(2):62-70.
  • [11]Sun Q, Zhang Z, Sun Z: The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis 2014, 1(1):113-119.
  • [12]Zhang D, Li Y, Zhu T, Zhang F, Yang Z, Miao D: Zinc supplementation results in improved therapeutic potential of bone marrow-derived mesenchymal stromal cells in a mouse ischemic limb model. Cytotherapy 2011, 13(2):156-164.
  • [13]Bara JJ, Richards RG, Alini M, Stoddart MJ: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 2014, 32(7):1713-1723.
  • [14]Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA: Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 2012, 16(9):1991-2000.
  • [15]Nazaran MH. Chelate compounds. Google Patents; 2012. Publication number: US20120100372 A1, Publication type: Application, Application number: US 12/910,799.. http://www.google.com/patents/US20120100372 webcite
  • [16]Fakharzadeh S, Kalanaky S, Hafizi M, Goya MM, Masoumi Z, Namaki S, et al.: The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine. Vaccine 2013, 31(22):2591-2597.
  • [17]Fakharzadeh S, Sahraian MA, Hafizi M, Kalanaky S, Masoumi Z, Mahdavi M, et al.: The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice. Int J Nanomedicine. 2014, 9:3841-3853.
  • [18]Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, et al.: The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 2010, 245(2):272-279.
  • [19]de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, et al.: Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 2008, 41(9):771-778.
  • [20]Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E: Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 2002, 116(3):655-661.
  • [21]Zhao ZL, Yang RY, Gu TM, Wang C, Sui ZF, Chang DQ: Migratory and chemoattractant responses of mesenchymal stem cells to oxidative stress injury of endothelial cell in vitro. Zhonghua Yi Xue Za Zhi 2009, 89(22):1577-1581.
  • [22]Alves H, Mentink A, Le B, van Blitterswijk CA, de Boer J: Effect of antioxidant supplementation on the total yield, oxidative stress levels, and multipotency of bone marrow-derived human mesenchymal stromal cells. Tissue Eng Part A 2013, 19(7–8):928-937.
  • [23]Si CL, Shen T, Jiang YY, Wu L, Yu GJ, Ren XD, et al.: Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food Chem Toxicol. 2013, 59:145-152.
  • [24]Gharibi B, Hughes FJ: Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med 2012, 1(11):771-782.
  • [25]Hafizi M, Bakhshandeh B, Soleimani M, Atashi A: Exploring the enkephalinergic differentiation potential in adult stem cells for cell therapy and drug screening implications. In Vitro Cell Dev Biol Anim 2012, 48(9):562-569.
  • [26]Zarif MN, Soleimani M, Abolghasemi H, Amirizade N, Arefian E, Rahimian A: Megakaryocytic differentiation of CD133+ hematopoietic stem cells by down-regulation of microRNA-10a. Hematology 2013, 18(2):93-100.
  • [27]Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, et al.: Nanotechnology to drive stem cell commitment. Nanomedicine (Lond) 2013, 8(3):469-486.
  • [28]Stanko P, Kaiserova K, Altanerova V, Altaner C: Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014, 158(3):373-377.
  • [29]Solanki A, Kim JD, Lee KB: Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond) 2008, 3(4):567-578.
  • [30]Gowda R, Jones NR, Banerjee S, Robertson GP. Use of nanotechnology to develop multi-drug inhibitors for cancer therapy. J Nanomed Nanotechnol. 2013;4(6):pii:184. doi:10.4172/2157-7439.1000184.
  • [31]Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, et al.: Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 2009, 106(7):2130-2135.
  • [32]Sharma A, Madhunapantula SV, Robertson GP: Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol 2012, 8(1):47-69.
  • [33]Maghsoudi A, Fakharzadeh S, Hafizi M, Abbasi M, Kohram F, Sardab S, et al.: Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity. Apoptosis 2015, 20(3):298-309.
  • [34]Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB: Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta 2009, 1790(7):702-717.
  • [35]Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, et al.: The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009, 30(22):3645-3651.
  • [36]Peled T, Glukhman E, Hasson N, Adi S, Assor H, Yudin D, et al.: Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol 2005, 33(10):1092-1100.
  • [37]Rodriguez JP, Rios S, Gonzalez M: Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem 2002, 85(1):92-100.
  • [38]Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT: Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014, 12:8. BioMed Central Full Text
  • [39]Diederichs S, Tuan RS: Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 2014, 23(14):1594-1610.
  • [40]Schaffler A, Buchler C: Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007, 25(4):818-827.
  • [41]Aguiar A, Kuligovski C, Costa M, Stimamiglio M, Rebelatto C, Senegaglia A, et al.: Alkaline phosphatase-positive cells isolated from human hearts have mesenchymal stem cell characteristics. Stem Cell Discovery. 2011, 1:71-80.
  • [42]Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J: The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 2013, 9(1):1-14.
  • [43]Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y, et al.: Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res 2001, 61(21):7943-7949.
  • [44]Royster RL, Butterworth JF, Prough DS, Johnston WE, Thomas JL, Hogan PE, et al.: Preoperative and intraoperative predictors of inotropic support and long-term outcome in patients having coronary artery bypass grafting. Anesth Analg 1991, 72(6):729-736.
  • [45]Rahman I: Antioxidant therapeutic advances in COPD. Ther Adv Respir Dis 2008, 2(6):351-374.
  • [46]Nishihira S, Okubo N, Takahashi N, Ishisaki A, Sugiyama Y, Chosa N: High-cell density-induced VCAM1 expression inhibits the migratory ability of mesenchymal stem cells. Cell Biol Int 2011, 35(5):475-481.
  • [47]Yang JX, Zhang N, Wang HW, Gao P, Yang QP, Wen QP: CXCR4 receptor overexpression in mesenchymal stem cells facilitates treatment of acute lung injury in rats. J Biol Chem 2015, 290(4):1994-2006.
  • [48]Chamberlain G, Fox J, Ashton B, Middleton J: Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25(11):2739-2749.
  • [49]Dighe PA, Viswanathan P, Mruthunjaya AK, Seetharam RN: Effect of bFGF on HLA-DR expression of human bone marrow-derived mesenchymal stem cells. J Stem Cells 2013, 8(1):43-57.
  • [50]Shafiee A, Kabiri M, Ahmadbeigi N, Yazdani SO, Mojtahed M, Amanpour S, et al.: Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev 2011, 20(12):2077-2091.
  • [51]Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS: TGF-beta/BMP signaling pathway is involved in cerium-promoted osteogenic differentiation of mesenchymal stem cells. J Cell Biochem 2013, 114(5):1105-1114.
  • [52]Liu X, Ming Y, Chen L, Peng L, Ye Q, Zheng S, et al.: TNF-α and G-CSF induce CD62L and CD106 expressions on rat bone marrow-derived MSCs. Asian Biomed 2012, 6(3):453-458.
  文献评价指标  
  下载次数:71次 浏览次数:36次