期刊论文详细信息
Molecular Neurodegeneration
Overcoming barriers and thresholds – signaling of oligomeric Aβ through the prion protein to Fyn
Gerold Schmitt-Ulms2  C Geeth Gunawardana1  Carl He Ren2  Hansen Wang1 
[1] Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6 Queen’s Park Crescent West, Toronto, Ontario M5S 3H2, Canada;Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
关键词: Excitotoxicity;    Tau;    Prion protein;    Fyn;    Amyloid β peptide;    Alzheimer disease;   
Others  :  862255
DOI  :  10.1186/1750-1326-8-24
 received in 2013-05-17, accepted in 2013-07-09,  发布年份 2013
PDF
【 摘 要 】

Evidence has been mounting for an involvement of the prion protein (PrP) in a molecular pathway assumed to play a critical role in the etiology of Alzheimer disease. A currently popular model sees oligomeric amyloid β (oAβ) peptides bind directly to PrP to emanate a signal that causes activation of the cytoplasmic tyrosine kinase Fyn, an essential player in a cascade of events that ultimately leads to NMDA receptor-mediated excitotoxicity and hyper-phosphorylation of tau. The model does not reveal, however, how extracellular binding of oAβ to PrP is communicated across the plasma membrane barrier to affect activation of Fyn. A scenario whereby PrP may adapt a transmembrane topology to affect Fyn activation in the absence of additional partners is currently not supported by evidence. A survey of known candidate PrP interactors leads to a small number of molecules that are known to acquire a transmembrane topology and understood to contribute to Fyn activation. Because multiple signaling pathways converge onto Fyn, a realistic model needs to take into account a reality of Fyn acting as a hub that integrates signals from multiple inhibitory and activating effectors. To clarify the role of PrP in oAβ-dependent excitotoxicity, future studies may need to incorporate experimental designs that can probe the contributions of Fyn modulator pathways and rely on analogous readouts, rather than threshold effects, known to underlie excitotoxic signaling.

【 授权许可】

   
2013 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725012517113.pdf 829KB PDF download
66KB Image download
65KB Image download
85KB Image download
【 图 表 】

【 参考文献 】
  • [1]Ittner LM, Gotz J: Amyloid-beta and tau–a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 2011, 12:65-72.
  • [2]Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, et al.: Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 1998, 95:6448-6453.
  • [3]Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G: Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 1998, 111(Pt 21):3167-3177.
  • [4]Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A: Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci 2002, 99:6364-6369.
  • [5]Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, et al.: Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 2011, 31:700-711.
  • [6]Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van ersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, et al.: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 2010, 142:387-397.
  • [7]Haass C, Mandelkow E: Fyn-tau-amyloid: a toxic triad. Cell 2010, 142:356-358.
  • [8]Patel AN, Jhamandas JH: Neuronal receptors as targets for the action of amyloid-beta protein (Abeta) in the brain. Expert Rev Mol Med 2012, 14:e2.
  • [9]Dinamarca MC, Rios JA, Inestrosa NC: Postsynaptic receptors for amyloid-beta oligomers as mediators of neuronal damage in Alzheimer's disease. Front Physiol 2012, 3:464.
  • [10]Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM: Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 2012, 15:1227-1235.
  • [11]Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, Walsh DM, Rowan MJ: Alzheimer's disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 2011, 31:7259-7263.
  • [12]Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J, Mansuy IM, Aguzzi A: Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2010, 2:306-314.
  • [13]Chen S, Yadav SP, Surewicz WK: Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem 2010, 285:26377-26383.
  • [14]Kudo W, Lee HP, Zou WQ, Wang X, Perry G, Zhu X, Smith MA, Petersen RB, Lee HG: Cellular prion protein is essential for oligomeric amyloid-beta-induced neuronal cell death. Hum Mol Genet 2011, 21:1138-1144.
  • [15]Zou WQ, Xiao X, Yuan J, Puoti G, Fujioka H, Wang X, Richardson S, Zhou X, Zou R, Li S, et al.: Amyloid-beta42 interacts mainly with insoluble prion protein in the Alzheimer brain. J Biol Chem 2011, 286:15095-15105.
  • [16]Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T, et al.: Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci 2010, 107:2295-2300.
  • [17]Cisse M, Sanchez PE, Kim DH, Ho K, Yu GQ, Mucke L: Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 2011, 31:10427-10431.
  • [18]Benilova I, De Strooper B: Prion protein in Alzheimer's pathogenesis: a hot and controversial issue. EMBO Mol Med 2010, 2:289-290.
  • [19]Biasini E, Turnbaugh JA, Unterberger U, Harris DA: Prion protein at the crossroads of physiology and disease. Trends Neurosci 2012, 35:92-103.
  • [20]Petit-Paitel A, Menard B, Guyon A, Beringue V, Nahon JL, Zsurger N, Chabry J: Prion protein is a key determinant of alcohol sensitivity through the modulation of N-methyl-D-aspartate receptor (NMDAR) activity. PLoS One 2012, 7:e34691.
  • [21]Morris M, Maeda S, Vossel K, Mucke L: The many faces of tau. Neuron 2011, 70:410-426.
  • [22]Cisse M, Mucke L: Alzheimer's Disease: a prion protein connection. Nature 2009, 457:1090-1091.
  • [23]Aguzzi A, Baumann F, Bremer J: The Prion's elusive reason for being. Annu Rev Neurosci 2008, 31:439-477.
  • [24]Sorgato MC, Peggion C, Bertoli A: Is, indeed, the prion protein a Harlequin servant of “many” masters? Prion 2009, 3:202-205.
  • [25]Santuccione A, Sytnyk V, Leshchyns'ka I, Schachner M: Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 2005, 169:341-354.
  • [26]Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB: Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 2001, 314:1209-1225.
  • [27]Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, Daude N, Lau A, Young R, Xu L, et al.: Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 2009, 5:e1000608.
  • [28]Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O: Signal transduction through prion protein. Science 2000, 289:1925-1928.
  • [29]Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesne SE: The Complex PrPc-Fyn couples human oligomeric abeta with pathological Tau changes in Alzheimer's disease. J Neurosci 2012, 32:16857-16871.
  • [30]Maness PF, Schachner M: Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 2007, 10:19-26.
  • [31]Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M: Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 2002, 157:521-532.
  • [32]Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA: Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotech 2004, 22:724-731.
  • [33]Beggs HE, Soriano P, Maness PF: NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J Cell Biol 1994, 127:825-833.
  • [34]Bodrikov V, Leshchyns'ka I, Sytnyk V, Overvoorde J, den Hertog J, Schachner M: RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. J Cell Biol 2005, 168:127-139.
  • [35]Zeng L, D'Alessandri L, Kalousek MB, Vaughan L, Pallen CJ: Protein tyrosine phosphatase alpha (PTPalpha) and contactin form a novel neuronal receptor complex linked to the intracellular tyrosine kinase fyn. J Cell Biol 1999, 147:707-714.
  • [36]Su J, Muranjan M, Sap J: Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Current biology : CB 1999, 9:505-511.
  • [37]von Wichert G, Jiang G, Kostic A, De Vos K, Sap J, Sheetz MP: RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages. J Cell Biol 2003, 161:143-153.
  • [38]Tracy S, van der Geer P, Hunter T: The receptor-like protein-tyrosine phosphatase, RPTP alpha, is phosphorylated by protein kinase C on two serines close to the inner face of the plasma membrane. J Biol Chem 1995, 270:10587-10594.
  • [39]Zheng XM, Resnick RJ, Shalloway D: Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation. J Biol Chem 2002, 277:21922-21929.
  • [40]Bodrikov V, Sytnyk V, Leshchyns'ka I, den Hertog J, Schachner M: NCAM induces CaMKIIalpha-mediated RPTPalpha phosphorylation to enhance its catalytic activity and neurite outgrowth. J Cell Biol 2008, 182:1185-1200.
  • [41]Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S: The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 2001, 20:5863-5875.
  • [42]Campbell ID, Humphries MJ: Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 2011, 3:1-14.
  • [43]Magnifico A, Tagliabue E, Buto S, Ardini E, Castronovo V, Colnaghi MI, Menard S: Peptide G, containing the binding site of the 67-kDa laminin receptor, increases and stabilizes laminin binding to cancer cells. J Biol Chem 1996, 271:31179-31184.
  • [44]Pellegrini R, Martignone S, Menard S, Colnaghi MI: Laminin receptor expression and function in small-cell lung carcinoma. Int J Cancer Suppl 1994, 8:116-120.
  • [45]Ardini E, Tagliabue E, Magnifico A, Buto S, Castronovo V, Colnaghi MI, Menard S: Co-regulation and physical association of the 67-kDa monomeric laminin receptor and the alpha6beta4 integrin. J Biol Chem 1997, 272:2342-2345.
  • [46]Ruppert M, Aigner S, Hubbe M, Yagita H, Altevogt P: The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 1995, 131:1881-1891.
  • [47]Felding-Habermann B, Silletti S, Mei F, Siu CH, Yip PM, Brooks PC, Cheresh DA, O'Toole TE, Ginsberg MH, Montgomery AM: A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J Cell Biol 1997, 139:1567-1581.
  • [48]Zeng L, Si X, Yu WP, Le HT, Ng KP, Teng RM, Ryan K, Wang DZ, Ponniah S, Pallen CJ: PTP alpha regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration. J Cell Biol 2003, 160:137-146.
  • [49]Chen M, Chen SC, Pallen CJ: Integrin-induced tyrosine phosphorylation of protein-tyrosine phosphatase-alpha is required for cytoskeletal reorganization and cell migration. J Biol Chem 2006, 281:11972-11980.
  • [50]Williams TM, Lisanti MP: The caveolin proteins. Genome Biol 2004, 5:214. BioMed Central Full Text
  • [51]Li S, Couet J, Lisanti MP: Src tyrosine kinases, galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996, 271:29182-29190.
  • [52]Toni M, Spisni E, Griffoni C, Santi S, Riccio M, Lenaz P, Tomasi V: Cellular prion protein and caveolin-1 interaction in a neuronal cell line precedes Fyn/Erk 1/2 signal transduction. J Biomed Biotechnol 2006, 2006:69469.
  • [53]Pantera B, Bini C, Cirri P, Paoli P, Camici G, Manao G, Caselli A: PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem 2009, 110:194-207.
  • [54]Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R: One-Step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153:910-918.
  • [55]Zhang B: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013, 153:707-720.
  • [56]Lewitzky M, Simister PC, Feller SM: Beyond ‘furballs’ and ‘dumpling soups’ - towards a molecular architecture of signaling complexes and networks. FEBS Lett 2012, 586:2740-2750.
  • [57]Rutishauser D, Mertz KD, Moos R, Brunner E, Rulicke T, Calella AM, Aguzzi A: The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 2009, 4:e4446.
  • [58]Bai Y, Markham K, Chen F, Weerasekera R, Watts J, Horne P, Wakutani Y, Bagshaw R, Mathews PM, Fraser PE, et al.: The in vivo brain interactome of the amyloid precursor protein. Mol Cell Proteomics 2008, 7:15-34.
  • [59]Borchelt DR, Rogers M, Stahl N, Telling G, Prusiner SB: Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipid anchor. Glycobiology 1993, 3:319-329.
  • [60]Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A: Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 1997, 272:6324-6331.
  • [61]Rushworth JV, Griffiths HH, Watt NT, Hooper NM: Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 2013, 288:8935-8951.
  • [62]Leslie M: Mysteries of the cell. Do lipid rafts exist? Science 2011, 334:1046-1047.
  • [63]Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science 2010, 327:46-50.
  • [64]Fujimura Y, Yamada K, Tachibana H: A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem Biophys Res Commun 2005, 336:674-681.
  • [65]van Zanten TS, Cambi A, Koopman M, Joosten B, Figdor CG, Garcia-Parajo MF: Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc Natl Acad Sci USA 2009, 106:18557-18562.
  • [66]Rabinowich H, Manciulea M, Herberman RB, Whiteside TL: Beta1 integrin-mediated activation of focal adhesion kinase and its association with Fyn and Zap-70 in human NK cells. J Immunol 1996, 157:3860-3868.
  • [67]Ramseger R, White R, Kroger S: Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK. J Biol Chem 2009, 284:7697-7705.
  • [68]Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009, 457:1128-1132.
  • [69]Wright S, Malinin NL, Powell KA, Yednock T, Rydel RE, Griswold-Prenner I: Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiol Aging 2007, 28:226-237.
  • [70]Alier K, Ma L, Yang J, Westaway D, Jhamandas JH: Abeta inhibition of ionic conductance in mouse basal forebrain neurons is dependent upon the cellular prion protein PrPC. J Neurosci 2011, 31:16292-16297.
  • [71]Jhamandas JH, Harris KH, Cho C, Fu W, MacTavish D: Human amylin actions on rat cholinergic basal forebrain neurons: antagonism of beta-amyloid effects. J Neurophysiol 2003, 89:2923-2930.
  • [72]Kuwasako K, Shimekake Y, Masuda M, Nakahara K, Yoshida T, Kitaura M, Kitamura K, Eto T, Sakata T: Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and recycling. J Biol Chem 2000, 275:29602-29609.
  • [73]Fu W, Ruangkittisakul A, MacTavish D, Shi JY, Ballanyi K, Jhamandas JH: Amyloid beta (Abeta) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J Biol Chem 2012, 287:18820-18830.
  • [74]Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM: Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 2005, 67:1655-1665.
  • [75]Trepanier CH, Jackson MF, MacDonald JF: Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 2012, 279:12-19.
  • [76]Ohnishi H, Murata Y, Okazawa H, Matozaki T: Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci 2011, 34:629-637.
  • [77]Nguyen TH, Liu J, Lombroso PJ: Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J Biol Chem 2002, 277:24274-24279.
  • [78]Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR, Neel BG: Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 2004, 13:341-355.
  • [79]Peng ZY, Cartwright CA: Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. Oncogene 1995, 11:1955-1962.
  • [80]Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X: The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 2012, 279:20-28.
  • [81]Klein C, Kramer EM, Cardine AM, Schraven B, Brandt R, Trotter J: Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J Neurosci 2002, 22:698-707.
  • [82]Sperber BR, Boyle-Walsh EA, Engleka MJ, Gadue P, Peterson AC, Stein PL, Scherer SS, McMorris FA: A unique role for Fyn in CNS myelination. J Neurosci 2001, 21:2039-2047.
  • [83]Laursen LS, Chan CW, ffrench-Constant C: An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J Neurosci 2009, 29:9174-9185.
  • [84]Kim AN, Jeon WK, Lim KH, Lee HY, Kim WJ, Kim BC: Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Biochem Biophys Res Commun 2011, 407:181-184.
  • [85]Smyth D, Leung G, Fernando M, McKay DM: Reduced surface expression of epithelial E-cadherin evoked by interferon-gamma is Fyn kinase-dependent. PLoS One 2012, 7:e38441.
  • [86]Li X, Yang Y, Hu Y, Dang D, Regezi J, Schmidt BL, Atakilit A, Chen B, Ellis D, Ramos DM: Alphavbeta6-Fyn signaling promotes oral cancer progression. J Biol Chem 2003, 278:41646-41653.
  • [87]Saito YD, Jensen AR, Salgia R, Posadas EM: Fyn: a novel molecular target in cancer. Cancer 2010, 116:1629-1637.
  • [88]Barbin G, Aigrot MS, Charles P, Foucher A, Grumet M, Schachner M, Zalc B, Lubetzki C: Axonal cell-adhesion molecule L1 in CNS myelination. Neuron Glia Biol 2004, 1:65-72.
  • [89]Kramer EM, Klein C, Koch T, Boytinck M, Trotter J: Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 1999, 274:29042-29049.
  • [90]Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A: Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 2010, 13:310-318.
  • [91]Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA: Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 2009, 7:e55.
  文献评价指标  
  下载次数:30次 浏览次数:9次