Virology Journal | |
Recombinant lentogenic Newcastle disease virus expressing Ebola virus GP infects cells independently of exogenous trypsin and uses macropinocytosis as the major pathway for cell entry | |
Zhigao Bu1  Jinying Ge1  Dongni Kong1  Weiye Chen1  Xule Hu1  Kun Song1  Bolin Zhao1  Zhiyuan Wen1  | |
[1] State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, People’s Republic of China | |
关键词: Macropinocytosis; Virus entry; Glycoprotein; Ebola virus; Recombinant Newcastle disease virus; | |
Others : 820291 DOI : 10.1186/1743-422X-10-331 |
|
received in 2013-07-16, accepted in 2013-11-05, 发布年份 2013 | |
【 摘 要 】
Background
Using reverse genetics, we generated a recombinant low-pathogenic LaSota strain Newcastle disease virus (NDV) expressing the glycoprotein (GP) of Ebola virus (EBOV), designated rLa-EBOVGP, and evaluated its biological characteristic in vivo and in vitro.
Results
The introduction and expression of the EBOV GP gene did not increase the virulence of the NDV vector in poultry or mice. EBOV GP was incorporated into the particle of the vector virus and the recombinant virus rLa-EBOVGP infected cells and spread within them independently of exogenous trypsin. rLa-EBOVGP is more resistant to NDV antiserum than the vector NDV and is moderately sensitive to EBOV GP antiserum. More importantly, infection with rLa-EBOVGP was markedly inhibited by IPA3, indicating that rLa-EBOVGP uses macropinocytosis as the major internalization pathway for cell entry.
Conclusions
The results demonstrate that EBOV GP in recombinant NDV particles functions independently to mediate the viral infection of the host cells and alters the cell-entry pathway.
【 授权许可】
2013 Wen et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712034710740.pdf | 1409KB | download | |
Figure 4. | 32KB | Image | download |
Figure 3. | 97KB | Image | download |
Figure 2. | 71KB | Image | download |
Figure 1. | 88KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Feldmann H, Geisbert TW: Ebola haemorrhagic fever. Lancet 2011, 377:849-862.
- [2]Hoenen T, Groseth A, Falzarano D, Feldmann H: Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 2006, 12:206-215.
- [3]Feldmann H, Klenk HD, Sanchez A: Molecular biology and evolution of filoviruses. Arch Virol Suppl 1993, 7:81-100.
- [4]Chan SY, Speck RF, Ma MC, Goldsmith MA: Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 2000, 74:4933-4937.
- [5]Ito H, Watanabe S, Sanchez A, Whitt MA, Kawaoka Y: Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 1999, 73:8907-8912.
- [6]Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y: A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 1997, 94:14764-14769.
- [7]Wool-Lewis RJ, Bates P: Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 1998, 72:3155-3160.
- [8]Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, Nabel GJ: Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 1998, 279:1034-1037.
- [9]Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD: Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 2001, 291:1965-1969.
- [10]Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ: Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 2000, 6:886-889.
- [11]Maruyama T, Rodriguez LL, Jahrling PB, Sanchez A, Khan AS, Nichol ST, Peters CJ, Parren PW, Burton DR: Ebola virus can be effectively neutralized by antibody produced in natural human infection. J Virol 1999, 73:6024-6030.
- [12]Wilson JA, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn AL, Hart MK: Epitopes involved in antibody-mediated protection from Ebola virus. Science 2000, 287:1664-1666.
- [13]Sullivan NJ, Geisbert TW, Geisbert JB, Shedlock DJ, Xu L, Lamoreaux L, Custers JH, Popernack PM, Yang ZY, Pau MG, et al.: Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS Med 2006, 3:e177.
- [14]Sullivan NJ, Hensley L, Asiedu C, Geisbert TW, Stanley D, Johnson J, Honko A, Olinger G, Bailey M, Geisbert JB, et al.: CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nat Med 2011, 17:1128-1131.
- [15]Jones SM, Feldmann H, Stroher U, Geisbert JB, Fernando L, Grolla A, Klenk HD, Sullivan NJ, Volchkov VE, Fritz EA, et al.: Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 2005, 11:786-790.
- [16]Qiu X, Fernando L, Alimonti JB, Melito PL, Feldmann F, Dick D, Stroher U, Feldmann H, Jones SM: Mucosal immunization of cynomolgus macaques with the VSVDeltaG/ZEBOVGP vaccine stimulates strong ebola GP-specific immune responses. PLoS One 2009, 4:e5547.
- [17]DiNapoli JM, Yang L, Samal SK, Murphy BR, Collins PL, Bukreyev A: Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010, 29:17-25.
- [18]Blaney JE, Wirblich C, Papaneri AB, Johnson RF, Myers CJ, Juelich TL, Holbrook MR, Freiberg AN, Bernbaum JG, Jahrling PB, et al.: Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses. J Virol 2011, 85:10605-10616.
- [19]Alexander DJ: Newcastle Disease. American Association for Avian Pathologists: Kennett Square, PA; 1989.
- [20]Peeters BP, de Leeuw OS, Koch G, Gielkens AL: Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 1999, 73:5001-5009.
- [21]Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK: Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 2004, 36:1-10.
- [22]Charan S, Mahajan VM, Agarwal LP: Newcastle disease virus antibodies in human sera. Indian J Med Res 1981, 73:303-307.
- [23]Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C: Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther 1999, 6:63-73.
- [24]Morrison T, McQuain C, Sergel T, McGinnes L, Reitter J: The role of the amino terminus of F1 of the Newcastle disease virus fusion protein in cleavage and fusion. Virology 1993, 193:997-1000.
- [25]Nagai Y, Klenk HD, Rott R: Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 1976, 72:494-508.
- [26]Alexander D: Newcastle Disease and Other Avian Paramyxoviridae Infections. Ames: Iowa State University Press; 1997.
- [27]Ge J, Tian G, Zeng X, Jiang Y, Chen H, Bua Z: Generation and evaluation of a Newcastle disease virus-based H9 avian influenza live vaccine. Avian Dis 2010, 54:294-296.
- [28]Nakaya T, Cros J, Park MS, Nakaya Y, Zheng H, Sagrera A, Villar E, Garcia-Sastre A, Palese P: Recombinant Newcastle disease virus as a vaccine vector. J Virol 2001, 75:11868-11873.
- [29]DiNapoli JM, Kotelkin A, Yang L, Elankumaran S, Murphy BR, Samal SK, Collins PL, Bukreyev A: Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc Natl Acad Sci USA 2007, 104:9788-9793.
- [30]Bukreyev A, Huang Z, Yang L, Elankumaran S, St Claire M, Murphy BR, Samal SK, Collins PL: Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J Virol 2005, 79:13275-13284.
- [31]DiNapoli JM, Nayak B, Yang L, Finneyfrock BW, Cook A, Andersen H, Torres-Velez F, Murphy BR, Samal SK, Collins PL, Bukreyev A: Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of H5N1 highly pathogenic avian influenza virus protect against virus challenge in monkeys. J Virol 2010, 84:1489-1503.
- [32]Ge J, Deng G, Wen Z, Tian G, Wang Y, Shi J, Wang X, Li Y, Hu S, Jiang Y, et al.: Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol 2007, 81:150-158.
- [33]Khattar SK, Samal S, Devico AL, Collins PL, Samal SK: Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs. J Virol 2011, 85:10529-10541.
- [34]Carnero E, Li W, Borderia AV, Moltedo B, Moran T, Garcia-Sastre A: Optimization of human immunodeficiency virus gag expression by newcastle disease virus vectors for the induction of potent immune responses. J Virol 2009, 83:584-597.
- [35]Ge J, Wang X, Tao L, Wen Z, Feng N, Yang S, Xia X, Yang C, Chen H, Bu Z: Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J Virol 2011, 85:8241-8252.
- [36]Kong D, Wen Z, Su H, Ge J, Chen W, Wang X, Wu C, Yang C, Chen H, Bu Z: Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 2012, 432:327-335.
- [37]Kortekaas J, de Boer SM, Kant J, Vloet RP, Antonis AF, Moormann RJ: Rift Valley fever virus immunity provided by a paramyxovirus vaccine vector. Vaccine 2010, 28:4394-4401.
- [38]Kortekaas J, Dekker A, de Boer SM, Weerdmeester K, Vloet RP, de Wit AA, Peeters BP, Moormann RJ: Intramuscular inoculation of calves with an experimental Newcastle disease virus-based vector vaccine elicits neutralizing antibodies against Rift Valley fever virus. Vaccine 2010, 28:2271-2276.
- [39]Khattar SK, Collins PL, Samal SK: Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 2010, 28:3159-3170.
- [40]Bukreyev A, Collins PL: Newcastle disease virus as a vaccine vector for humans. Curr Opin Mol Ther 2008, 10:46-55.
- [41]Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O’Neil JD, Groene WS, et al.: Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 2002, 20:2251-2266.
- [42]Ockert D, Schirrmacher V, Beck N, Stoelben E, Ahlert T, Flechtenmacher J, Hagmuller E, Buchcik R, Nagel M, Saeger HD: Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin Cancer Res 1996, 2:21-28.
- [43]Karcher J, Dyckhoff G, Beckhove P, Reisser C, Brysch M, Ziouta Y, Helmke BH, Weidauer H, Schirrmacher V, Herold-Mende C: Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells. Cancer Res 2004, 64:8057-8061.
- [44]OIE: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2011. Paris: Office International des Epizooties; 2011.
- [45]Cantin C, Holguera J, Ferreira L, Villar E, Munoz-Barroso I: Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J Gen Virol 2007, 88:559-569.
- [46]Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y: Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 2010, 6:e1001121.
- [47]Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 2010, 6:e1001110.
- [48]Aleksandrowicz P, Marzi A, Biedenkopf N, Beimforde N, Becker S, Hoenen T, Feldmann H, Schnittler HJ: Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis 2011, 204(Suppl 3):S957-S967.
- [49]Swanson JA: Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 2008, 9:639-649.
- [50]Kerr MC, Teasdale RD: Defining macropinocytosis. Traffic 2009, 10:364-371.
- [51]Mercer J, Helenius A: Virus entry by macropinocytosis. Nat Cell Biol 2009, 11:510-520.
- [52]Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K: Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999, 10:961-974.
- [53]Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE: Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 1999, 96:6775-6780.
- [54]Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M: Recombinant nipah virus vaccines protect pigs against challenge. J Virol 2006, 80:7929-7938.
- [55]Odunsi K, Matsuzaki J, Karbach J, Neumann A, Mhawech-Fauceglia P, Miller A, Beck A, Morrison CD, Ritter G, Godoy H, et al.: Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci USA 2012, 109:5797-5802.
- [56]Cebere I, Dorrell L, McShane H, Simmons A, McCormack S, Schmidt C, Smith C, Brooks M, Roberts JE, Darwin SC, et al.: Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine 2006, 24:417-425.
- [57]Vaccari M, Halwani R, Patterson LJ, Boasso A, Beal J, Tryniszewska E, Hryniewicz A, Venzon D, Haddad EK, El-Far M, et al.: Antibodies to gp120 and PD-1 expression on virus-specific CD8+ T cells in protection from simian AIDS. J Virol 2013, 87:3526-3537.
- [58]Park MS, Garcia-Sastre A, Cros JF, Basler CF, Palese P: Newcastle disease virus V protein is a determinant of host range restriction. J Virol 2003, 77:9522-9532.
- [59]Park MS, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, Bouvier N, Palese P, Garcia-Sastre A, Basler CF: Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 2003, 77:1501-1511.
- [60]Huang Z, Krishnamurthy S, Panda A, Samal SK: Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 2003, 77:8676-8685.
- [61]Blach-Olszewska Z: Interferon induction by Newcastle disease virus in mice. Arch Immunol Ther Exp (Warsz) 1970, 18:418-441.
- [62]Brehm G, Kirchner H: Analysis of the interferons induced in mice in vivo and in macrophages in vitro by Newcastle disease virus and by polyinosinic-polycytidylic acid. J Interferon Res 1986, 6:21-28.
- [63]Bukreyev A, Yang L, Zaki SR, Shieh WJ, Rollin PE, Murphy BR, Collins PL, Sanchez A: A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge. J Virol 2006, 80:2267-2279.
- [64]Kunz S, Rojek JM, Perez M, Spiropoulou CF, Oldstone MB: Characterization of the interaction of lassa fever virus with its cellular receptor alpha-dystroglycan. J Virol 2005, 79:5979-5987.
- [65]Ogino M, Ebihara H, Lee BH, Araki K, Lundkvist A, Kawaoka Y, Yoshimatsu K, Arikawa J: Use of vesicular stomatitis virus pseudotypes bearing hantaan or seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol 2003, 10:154-160.
- [66]Kaku Y, Noguchi A, Marsh GA, McEachern JA, Okutani A, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A, et al.: A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein. J Virol Methods 2009, 160:7-13.
- [67]Wang X, Ge J, Hu S, Wang Q, Wen Z, Chen H, Bu Z: Efficacy of DNA immunization with F and G protein genes of Nipah virus. Ann N Y Acad Sci 2006, 1081:243-245.
- [68]Lamb RA, Kolakofsky D (Eds): Fields Virology. 3rd edition. Philadelphia: Lippincott-Williams & Wilkins; 2001.
- [69]Hernandez LD, Hoffman LR, Wolfsberg TG, White JM: Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol 1996, 12:627-661.
- [70]Lamb RA: Paramyxovirus fusion: a hypothesis for changes. Virology 1993, 197:1-11.
- [71]Quinn K, Brindley MA, Weller ML, Kaludov N, Kondratowicz A, Hunt CL, Sinn PL, McCray PB Jr, Stein CS, Davidson BL, et al.: Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors. J Virol 2009, 83:10176-10186.
- [72]Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, et al.: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 2011, 477:340-343.
- [73]Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, et al.: Ebola virus entry requires the host-programmed recognition of an intracellular receptor. Embo J 2012, 31:1947-1960.