Particle and Fibre Toxicology | |
Longitudinal study on the temporal and micro-spatial distribution of Galba truncatula in four farms in Belgium as a base for small-scale risk mapping of Fasciola hepatica | |
Jozef Vercruysse1  Guy Hendrickx2  Robert De Wulf3  Frieke Van Coillie3  Els Ducheyne2  Wouter Hantson2  Els De Roeck3  Karen Soenen1  Johannes Charlier1  | |
[1] Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium;Avia-GIS, Risschotlei 33, Zoersel, 2980, Belgium;Laboratory of Forest Management and Spatial Information Techniques, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium | |
关键词: Risk mapping; Small-scale; Species distribution; Liver fluke; Fasciola hepatica; Galba truncatula; | |
Others : 1149111 DOI : 10.1186/s13071-014-0528-0 |
|
received in 2014-09-08, accepted in 2014-11-06, 发布年份 2014 | |
【 摘 要 】
Background
The trematode parasite Fasciola hepatica causes important economic losses in ruminants worldwide. Current spatial distribution models do not provide sufficient detail to support farm-specific control strategies. A technology to reliably assess the spatial distribution of intermediate host snail habitats on farms would be a major step forward to this respect. The aim of this study was to conduct a longitudinal field survey in Flanders (Belgium) to (i) characterise suitable small water bodies (SWB) for Galba truncatula and (ii) describe the population dynamics of G. truncatula.
Methods
Four F. hepatica-infected farms from two distinct agricultural regions were examined for the abundance of G. truncatula from the beginning (April 2012) until the end (November 2012) of the grazing season. Per farm, 12 to 18 SWB were selected for monthly examination, using a 10 m transect analysis. Observations on G. truncatula abundance were coupled with meteorological and (micro-)environmental factors and the within-herd prevalence of F. hepatica using simple comparison or negative binomial regression models.
Results
A total of 54 examined SWB were classified as a pond, ditch, trench, furrow or moist area. G. truncatula abundance was significantly associated with SWB-type, region and total monthly precipitation, but not with monthly temperature. The clear differences in G. truncatula abundance between the 2 studied regions did not result in comparable differences in F. hepatica prevalence in the cattle. Exploration of the relationship of G. truncatula abundance with (micro)-environmental variables revealed a positive association with soil and water pH and the occurrence of Ranunculus sp. and a negative association with mowed pastures, water temperature and presence of reed-like plant species.
Conclusions
Farm-level predictions of G. truncatula risk and subsequent risk for F. hepatica occurrence would require a rainfall, soil type (representing the agricultural region) and SWB layer in a geographic information system. While rainfall and soil type information is easily accessible, the recent advances in very high spatial resolution cameras carried on board of satellites, planes or drones should allow the delineation of SWBs in the future.
【 授权许可】
2014 Charlier et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405023301238.pdf | 769KB | download | |
Figure 4. | 20KB | Image | download |
Figure 3. | 56KB | Image | download |
Figure 2. | 12KB | Image | download |
Figure 1. | 62KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Charlier J, Vercruysse J, Morgan E, van Dijk J, Williams DJ: Recent advances in the diagnosis, impact on production and prediction of Fasciola hepatica in cattle. Parasitology 2014, 141(3):326-335.
- [2]Schweizer G, Braun U, Deplazes P, Torgerson PR: Estimating the financial losses due to bovine fasciolosis in Switzerland. Vet Rec 2005, 157(7):188-193.
- [3]Caron Y, Martens K, Lempereur L, Saegerman C, Losson B: New insight in lymnaeid snails (Mollusca, Gastropoda) as intermediate hosts of Fasciola hepatica (Trematoda, Digenea) in Belgium and Luxembourg.Parasit Vectors 2014, 7:66.
- [4]Novobilsky A, Kasny M, Beran L, Rondelaud D, Hoglund J: Lymnaea palustris and Lymnaea fuscus are potential but uncommon intermediate hosts of Fasciola hepatica in Sweden.Parasit Vectors 2013, 6(1):251.
- [5]Relf V, Good B, McCarthy E, de Waal T: Evidence of Fasciola hepatica infection in Radix peregra and a mollusc of the family Succineidae in Ireland. Vet Parasitol 2009, 163(1–2):152-155.
- [6]Bennema SC, Ducheyne E, Vercruysse J, Claerebout E, Hendrickx G, Charlier J: Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone. Int J Parasitol 2011, 41(2):225-233.
- [7]McCann CM, Baylis M, Williams DJ: The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int J Parasitol 2010, 40(9):1021-1028.
- [8]Rapsch C, Dahinden T, Heinzmann D, Torgerson PR, Braun U, Deplazes P, Hurni L, Bar H, Knubben-Schweizer G: An interactive map to assess the potential spread of Lymnaea truncatula and the free-living stages of Fasciola hepatica in Switzerland. Vet Parasitol 2008, 154(3–4):242-249.
- [9]Charlier J, Bennema SC, Caron Y, Counotte M, Ducheyne E, Hendrickx G, Vercruysse J: Towards assessing fine-scale indicators for the spatial transmission risk of Fasciola hepatica in cattle. Geospat Health 2011, 5(2):239-245.
- [10]Dambach P, Sie A, Lacaux JP, Vignolles C, Machault V, Sauerborn R: Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso.Global Health Action 2009, 2. doi:10.3402/gha.v2i0.2094.
- [11]Vignolles C, Tourre YM, Mora O, Imanache L, Lafaye M: TerraSAR-X high-resolution radar remote sensing: an operational warning system for Rift Valley fever risk. Geospat Health 2010, 5(1):23-31.
- [12]Nebiker SAA, Scherrer M, Oesch DA: Light-Weight Multispectral Sensor for Micro UAV - Opportunities for Very High Resolution Airborne Remote Sensing. Int Arch Photogram Rem Sens Spatial Inform Sci 2008, 37:1193-1199.
- [13]Rondelaud D, Hourdin P, Vignoles P, Dreyfuss G, Cabaret J: The detection of snail host habitats in liver fluke infected farms by use of plant indicators. Vet Parasitol 2011, 181(2–4):166-173.
- [14]Schweizer G, Meli ML, Torgerson PR, Lutz H, Deplazes P, Braun U: Prevalence of Fasciola hepatica in the intermediate host Lymnaea truncatula detected by real time TaqMan PCR in populations from 70 Swiss farms with cattle husbandry. Vet Parasitol 2007, 150(1–2):164-169.
- [15]Vercauteren TSR: Zoetwaterweekdieren (Mollusca) van een aantal kleine waters in Klein-Brabant. Antwerpse Koepel voor Natuurstudie Jaarboek 2000, 2000:71-90.
- [16]Malone JBLAF, Hugh-Jones ME, Corkum KC: A three-year study on seasonal transmission and control of Fasciola hepatica in cattle in Louisiana. Prev Vet Med 1984/85, 3:131-141.
- [17]Devriese RWT, Vercoutere B: Land- en zoetwatermollusken van de Benelux. Uitgave van de Jeugdbond voor Natuurstudie en Milieubescherming, Gent 3rd edition. 1997, 192.
- [18]Gittenberger EJAW, Kuijper WJ, Meijer T, van der Velde G, de Vries JN: De Nederlandse zoetwatermollusken. Recente en fossiele weekdieren uit zoet en brak water - Nederlandse Fauna 2. In Nationaal Natuurhistorisch Museum Naturalis. KNNV Uitgeverij & EIS-Nederland, Leiden; 1998:288.
- [19]Relf V, Good B, Hanrahan JP, McCarthy E, Forbes AB, de Waal T: Temporal studies on Fasciola hepatica in Galba truncatula in the west of Ireland. Vet Parasitol 2011, 175(3–4):287-292.
- [20]Charlier J, De Meulemeester L, Claerebout E, Williams D, Vercruysse J: Qualitative and quantitative evaluation of coprological and serological techniques for the diagnosis of fasciolosis in cattle. Vet Parasitol 2008, 153(1–2):44-51.
- [21]Vuong QH: Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 1989, 57(2):307-333.
- [22]Dohoo IMW, Stryhn H: Repeated Measures Data. In Veterinary Epidemiologic Research. 2nd edition. Edited by McPike SM. VER Inc, Charlottetown; 2010:607-636.
- [23]Taylor EL: Fascioliasis and the liver fluke. FAO, Rome; 1964.
- [24]Gettinby G, Hope-Cawdery MJ, Graingen JN: Forecasting the incidence of fascioliasis from climatic data. Int J Biometeorol 1974, 18(4):319-323.
- [25]Heppleston PB: Life history and population fluctuations of Lymnaea truncatula (Mull), the snail vector of fascioliasis. J Appl Ecol 1971, 9:235-248.
- [26]Claxton JR, Sutherst J, Ortiz P, Clarkson MJ: The effect of cyclic temperatures on the growth of Fasciola hepatica and Lymnaea viatrix. Veterinary J 1999, 157(2):166-171.
- [27]Morley NJ, Lewis JW: Thermodynamics of cercarial development and emergence in trematodes. Parasitology 2013, 140(10):1211-1224.
- [28]Rondelaud D, Titi A, Vignoles P, Mekroud A, Dreyfuss G: Consequence of temperature changes on cercarial shedding from Galba truncatula infected with Fasciola hepatica or Paramphistomum daubneyi .Parasite 2013, 20:10.
- [29]Ollerenshaw CB, Rowlands WT: A method of forecasting the incidence of fascioliasis in Anglesey. Vet Rec 1959, 71:591-598.
- [30]Novobilsky A, Engstrom A, Sollenberg S, Gustafsson K, Morrison DA, Hoglund J: Transmission patterns of Fasciola hepatica to ruminants in Sweden. Vet Parasitol 2014, 203(3–4):276-286.
- [31]Soulsby EJL: Helminths, arthropods and protozoa of domesticated animals. 7th edition. Baillière Tindal, London; 1982.
- [32]Berghen P: Morphological and ecological observations about Lymnaea truncatula, the intermediate host of Fasciola hepatica (in Dutch). Natuurwet Tijdschrift 1966, 48:51-66.
- [33]Bennema S, Vercruysse J, Claerebout E, Schnieder T, Strube C, Ducheyne E, Hendrickx G, Charlier J: The use of bulk-tank milk ELISAs to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparus in dairy cattle in Flanders (Belgium). Vet Parasitol 2009, 165(1–2):51-57.
- [34]Caron Y, Losson B, Lasri S: Fasciola hepatica: an assessment on the vectorial capacity of Radix labiata and R. balthica commonly found in Belgium. Vet Parasitol 2007, 149(1–2):95-103.
- [35]Dreyfuss G, Vignoles P, Rondelaud D: Natural infections of Omphiscola glabra (Lymnaeidae) with Fasciola hepatica in central France. Parasitol Res 2003, 91(6):458-461.
- [36]Rondelaud D, Titi A, Vignoles P, Mekroud A, Dreyfuss G: Adaptation of Lymnaea fuscus and Radix balthica to Fasciola hepatica through the experimental infection of several successive snail generations.Parasit Vectors 2014, 7(1):296.
- [37]Enwright NM, Jones WR, Garber AL, Keller MJ: Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery. Int J Remote Sens 2014, 35(13):5280-5288.
- [38]De Roeck E, Van Coillie FMB, Soenen K, Charlier J, Vercruysse J, Hantson W, Ducheyne E, Hendrickx G, De Wulf R: Fine-scale mapping of vector habitats using very high resolution satellite imagery: a case-study on liver fluke.Geospat Health. in press.
- [39]Elith J, Burgman MA, Regan HM: Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 2002, 157(2–3):313-329.