期刊论文详细信息
Neural Development
Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs
Kenneth S. Kosik2  Bian Wu2  Israel Hernandez2  Caroline Corbel1 
[1] Present address: EA4250-Laboratoire d’Ingénierie des Matériaux de Bretagne, Equipe Génie des Bioprocédés et Biomolécules, Université de Bretagne Sud, CER Yves Coppens, Vannes 56017, France;Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106, CA, USA
关键词: miR-539;    miR-19a;    NMDA receptor;    Developmental switch;    Glutamate receptor;    Synaptic plasticity;    microRNA (miRNA);   
Others  :  1226175
DOI  :  10.1186/s13064-015-0047-5
 received in 2015-06-23, accepted in 2015-09-02,  发布年份 2015
PDF
【 摘 要 】

Background

N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors and are expressed throughout the central nervous system (CNS). Their activity is required for excitatory synaptic transmission, the developmental refinement of neural circuits and for the expression of many forms of synaptic plasticity. NMDARs are obligate heterotetramers and the expression of their constituent subunits is developmentally and anatomically regulated. In rodent cortex and hippocampus, the GluN2B subunit is expressed at high levels early in development and decreases to plateau levels later while expression of the GluN2A subunit has a concomitant increase. Regulation of GluN2A and GluN2B expressions are incompletely understood. Here, we showed the influence of miRNAs in this process.

Findings

Two miRNAs, miR-19a and miR-539 can influence the levels of NMDARs subunits, as they target the mRNAs encoding GluN2A and GluN2B respectively. MiR-539 also modified the expression of the transcription factor REST, a known regulator of NMDAR subunit expression.

Conclusions

miR-19a and miR-539, in collaboration with REST, serve to set the levels of GluN2A and GluN2B precisely during development. These miRNAs offer an entry point for interventions that affect plasticity and a novel approach to treat neurodegenerative diseases.

【 授权许可】

   
2015 Corbel et al.

【 预 览 】
附件列表
Files Size Format View
20150923082202725.pdf 1948KB PDF download
Fig. 5. 23KB Image download
Fig. 4. 52KB Image download
Fig. 3. 77KB Image download
Fig. 2. 51KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Paoletti P: Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 2011, 33(8):1351-65.
  • [2]Harney SC, Rowan M, Anwyl R: Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci 2006, 26(4):1128-32.
  • [3]Scheetz AJ, Constantine-Paton M: Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB J 1994, 8(10):745-52.
  • [4]Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH: Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12(3):529-40.
  • [5]Yashiro K, Philpot BD: Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008, 55(7):1081-94.
  • [6]Xu Z, Chen RQ, Gu QH, Yan JZ, Wang SH, Liu SY, et al.: Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J Neurosci 2009, 29(27):8764-73.
  • [7]Hall BJ, Ripley B, Ghosh A: NR2B signaling regulates the development of synaptic AMPA receptor current. J Neurosci 2007, 27(49):13446-56.
  • [8]Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA: Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 2011, 71(6):1085-101.
  • [9]Lee MC, Yasuda R, Ehlers MD: Metaplasticity at single glutamatergic synapses. Neuron 2010, 66(6):859-70.
  • [10]von Engelhardt J, Doganci B, Jensen V, Hvalby O, Gongrich C, Taylor A, et al.: Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 2008, 60(5):846-60.
  • [11]Hu NW, Klyubin I, Anwyl R, Rowan MJ: GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci U S A 2009, 106(48):20504-9.
  • [12]Rammes G, Hasenjager A, Sroka-Saidi K, Deussing JM, Parsons CG: Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of beta-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 2011, 60(6):982-90.
  • [13]Kessels HW, Nabavi S, Malinow R: Metabotropic NMDA receptor function is required for beta-amyloid-induced synaptic depression. Proc Natl Acad Sci U S A 2013, 110(10):4033-8.
  • [14]Martel MA, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, et al.: The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 2012, 74(3):543-56.
  • [15]Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS: REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 2012, 15(10):1382-90.
  • [16]Kosik KS: MicroRNAs and cellular phenotypy. Cell 2010, 143(1):21-6.
  • [17]Fineberg SK, Kosik KS, Davidson BL: MicroRNAs potentiate neural development. Neuron 2009, 64(3):303-9.
  • [18]Ho VM, Dallalzadeh LO, Karathanasis N, Keles MF, Vangala S, Grogan T, et al.: GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci 2014, 61:1-12.
  • [19]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [20]Wang X, El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 2008, 24(3):325-32.
  • [21]Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-46.
  • [22]Williams K, Russell SL, Shen YM, Molinoff PB: Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 1993, 10(2):267-78.
  • [23]Thomson DW, Bracken CP, Szubert JM, Goodall GJ: On measuring miRNAs after transient transfection of mimics or antisense inhibitors. PLoS One 2013, 8(1):e55214.
  • [24]Horwich MD, Zamore PD: Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 2008, 3(10):1537-49.
  • [25]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science 2002, 298(5594):824-7.
  • [26]Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31(1):64-8.
  • [27]Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, et al.: A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 2008, 22(18):2535-49.
  文献评价指标  
  下载次数:22次 浏览次数:32次