期刊论文详细信息
Retrovirology
A single point mutation in cyclin T1 eliminates binding to Hexim1, Cdk9 and RNA but not to AFF4 and enforces repression of HIV transcription
Ran Taube2  Olivier Bensaude1  Maayan Maatook2  Sigal Galker2  Nina Verstraete1  Alona Kuzmina2 
[1]Ecole Normale Supérieure, Institut de Biologie de l’ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, Paris F-75005, France
[2]The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, ISRAEL
关键词: Super Elongation Complex;    Positive Transcription Elongation Factor b;    Tat;    Transcription repression;    HIV latency;   
Others  :  1131845
DOI  :  10.1186/1742-4690-11-51
 received in 2014-02-17, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

Human immunodeficiency virus (HIV) gene expression is primarily regulated at the step of transcription elongation. The viral Tat protein recruits the Positive Transcription Elongation Factor b (P-TEFb) and the Super Elongation Complex (SEC) to the HIV promoter and enhances transcription by host RNA polymerase II.

Results

To map residues in the cyclin box of cyclin T1 that mediate the binding of P-TEFb to its interacting host partners and support HIV transcription, a pool of N-terminal cyclin T1 mutants was generated. Binding and functional assays in cells identified specific positions in cyclin T1 that are important for (i) association of P-TEFb with Hexim1, Cdk9 and SEC/AFF4 (ii) supporting Tat-transactivation in murine cells and (iii) inhibition of basal and Tat-dependent HIV transcription in human cells. Significantly, a unique cyclin T1 mutant where a Valine residue at position 107 was mutated to Glutamate (CycT1-V107E) was identified. CycT1-V107E did not bind to Hexim1 or Cdk9, and also could not assemble on HIV TAR or 7SK-snRNA. However, it bound strongly to AFF4 and its association with HIV Tat was slightly impaired. CycT1-V107E efficiently inhibited HIV replication in human T cell lines and in CD4(+) primary cells, and enforced HIV transcription repression in T cell lines that harbor a transcriptionally silenced integrated provirus.

Conclusions

This study outlines the mechanism by which CycT1-V107E mutant inhibits HIV transcription and enforces viral latency. It defines the importance of N-terminal residues of cyclin T1 in mediating contacts of P-TEFb with its transcription partners, and signifies the requirement of a functional P-TEFb and SEC in mediating HIV transcription.

【 授权许可】

   
2014 Kuzmina et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150303093751347.pdf 2650KB PDF download
Figure 6. 142KB Image download
Figure 5. 54KB Image download
Figure 4. 59KB Image download
Figure 3. 70KB Image download
Figure 2. 51KB Image download
Figure 1. 75KB Image download
Figure 6. 142KB Image download
Figure 5. 54KB Image download
Figure 4. 59KB Image download
Figure 3. 70KB Image download
Figure 2. 51KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ho DD, Bieniasz PD: HIV-1 at 25. Cell 2008, 133:561-565.
  • [2]Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 2003, 9:727-728.
  • [3]Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS: Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 1998, 188:83-91.
  • [4]Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 2011, 477:95-98.
  • [5]Fujinaga K, Cujec TP, Peng J, Garriga J, Price DH, Grana X, Peterlin BM: The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J Virol 1998, 72:7154-7159.
  • [6]Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H: NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 1999, 97:41-51.
  • [7]Peterlin BM, Price DH: Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006, 23:297-305.
  • [8]Fujinaga K, Taube R, Wimmer J, Cujec TP, Peterlin BM: Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc Natl Acad Sci U S A 1999, 96:1285-1290.
  • [9]Zhou Q, Yik JH: The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 2006, 70:646-659.
  • [10]Barboric M, Peterlin BM: A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 2005, 3:e76.
  • [11]Wei P, Garber ME, Fang SM, Fischer WH, Jones KA: A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998, 92:451-462.
  • [12]He N, Chan CK, Sobhian B, Chou S, Xue Y, Liu M, Alber T, Benkirane M, Zhou Q: Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A 2011, 108:E636-E645.
  • [13]He N, Liu M, Hsu J, Xue Y, Chou S, Burlingame A, Krogan NJ, Alber T, Zhou Q: HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 2010, 38:428-438.
  • [14]Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M: HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010, 38:439-451.
  • [15]Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW: An RNA polymerase II elongation factor encoded by the human ELL gene. Science 1996, 271:1873-1876.
  • [16]Liu M, Hsu J, Chan C, Li Z, Zhou Q: The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell 2012, 46:325-334.
  • [17]Lu H, Li Z, Xue Y, Schulze-Gahmen U, Johnson JR, Krogan NJ, Alber T, Zhou Q: AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Proc Natl Acad Sci U S A 2014, 7(111(1)):E15-24.
  • [18]Schulze-Gahmen U, Upton H, Birnberg A, Bao K, Chou S, Krogan NJ, Zhou Q, Alber T: The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. Elife 2013, 2:e00327.
  • [19]Nguyen VT, Kiss T, Michels AA, Bensaude O: 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 2001, 414:322-325.
  • [20]Yang Z, Zhu Q, Luo K, Zhou Q: The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 2001, 414:317-322.
  • [21]Peterlin BM, Brogie JE, Price DH: 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA 2012, 3(1):92-103.
  • [22]Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q: Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 2003, 12:971-982.
  • [23]Yik JH, Chen R, Pezda AC, Samford CS, Zhou Q: A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 2004, 24:5094-5105.
  • [24]Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F, Nguyen VT, Sedore SC, Price JP, Price DH, Lania L, Bensaude O: Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 2004, 23:2608-2619.
  • [25]Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O: MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 2003, 23:4859-4869.
  • [26]Schulte A, Czudnochowski N, Barboric M, Schonichen A, Blazek D, Peterlin BM, Geyer M: Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. J Biol Chem 2005, 280:24968-24977.
  • [27]Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA: The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 1998, 12:3512-3527.
  • [28]Kuzmina A, Hadad U, Fujinaga K, Taube R: Functional characterization of a human cyclin T1 mutant reveals a different binding surface for Tat and HEXIM1. Virology 2012, 426:152-161.
  • [29]Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN: The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 2008, 27:1907-1918.
  • [30]Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH: Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 2010, 465:747-751.
  • [31]Dames SA, Schonichen A, Schulte A, Barboric M, Peterlin BM, Grzesiek S, Geyer M: Structure of the Cyclin T binding domain of Hexim1 and molecular basis for its recognition of P-TEFb. Proc Natl Acad Sci U S A 2007, 104:14312-14317.
  • [32]Durney MA, D'Souza VM: Preformed protein-binding motifs in 7SK snRNA: structural and thermodynamic comparisons with retroviral TAR. J Mol Biol 2010, 404:555-567.
  • [33]Lebars I, Martinez-Zapien D, Durand A, Coutant J, Kieffer B, Dock-Bregeon AC: HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements. Nucleic Acids Res 2010, 38:7749-7763.
  • [34]Anand K, Schulte A, Fujinaga K, Scheffzek K, Geyer M: Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. J Mol Biol 2007, 370:826-836.
  • [35]Anand K, Schulte A, Vogel-Bachmayr K, Scheffzek K, Geyer M: Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol 2008, 15:1287-1292.
  • [36]Tyagi M, Pearson RJ, Karn J: Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 2010, 84:6425-6437.
  • [37]Schulman BA, Lindstrom DL, Harlow E: Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 1998, 95:10453-10458.
  • [38]Bosken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, Anand K, Fisher RP, Eick D, Geyer M: The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun 2014, 5:3505.
  • [39]Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH: Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 2014, 13(11):1788-1797.
  • [40]Asamitsu K, Hibi Y, Imai K, Victoriano AF, Kurimoto E, Kato K, Okamoto T: Functional characterization of human cyclin T1 N-terminal region for human immunodeficiency virus-1 Tat transcriptional activation. J Mol Biol 2011, 410:887-895.
  文献评价指标  
  下载次数:52次 浏览次数:15次