期刊论文详细信息
Movement Ecology
Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning
R. P. Wilson5  I. E. Maguire6  E. A. Magowan6  N. J. Marks6  D. M. Scantlebury6  P. Urge1  M. D. Holton3  M. W. Jones4  J. S. Walker4  O. R. Bidder2 
[1]Faculté des Sciences de la Vie, Master d’Ecophysiologie et Ethologie, Université de Strasbourg, 28 rue Goethe, Strasbourg Cedex, 67083, France
[2]Institut für Terrestrische und Aquatische Wildtierforschung, Stiftung Tierärztliche Hochschule, Hannover, Werfstr. 6, Büsum, 25761, Germany
[3]College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
[4]Department of Computer Science, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP,, Wales, UK
[5]Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
[6]School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
关键词: terrestrial;    GPS;    animal movement;    dead reckoning;    Step length;   
Others  :  1227044
DOI  :  10.1186/s40462-015-0055-4
 received in 2015-01-21, accepted in 2015-09-06,  发布年份 2015
PDF
【 摘 要 】

Background

Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.

Results

We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.

Conclusions

This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.

【 授权许可】

   
2015 Bidder et al.

【 预 览 】
附件列表
Files Size Format View
Fig. 14. 18KB Image download
Fig. 13. 24KB Image download
Fig. 12. 102KB Image download
Fig. 11. 84KB Image download
hess-13-953-2009.pdf 1331KB PDF download
Fig. 9. 9KB Image download
Fig. 8. 46KB Image download
Fig. 7. 19KB Image download
Fig. 6. 30KB Image download
Fig. 5. 31KB Image download
Fig. 4. 27KB Image download
Fig. 3. 59KB Image download
Fig. 2. 20KB Image download
Fig. 1. 24KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Stephens DW, Brown JS, Ydenberg RC. Foraging: behaviour and ecology. Chicago University Press, Chicago; 2007.
  • [2]Stephens DW, Krebs JR. Foraging theory. Princeton University Press, Princeton NJ; 1986.
  • [3]Swingland IR, Greenwood PJ. The ecology of animal movement. Clarendon, Oxford; 1983.
  • [4]Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D et al.. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci. 2008; 105(49):19052-9.
  • [5]Dale VH, Brown S, Haeuber RA, Hobbs NT, Huntly N, Naiman RJ et al.. Ecological principles and guidelines for managing the use of land. Ecol Appl. 2000; 10(3):639-70.
  • [6]Kot M, Lewis MA, van den Driessche P. Dispersal data and the spread of invading organisms. Ecology. 1996; 77(7):2027-42.
  • [7]Stinner RE, Barfield CS, Stimac JL, Dohse L. Dispersal and movement of insect pests. Annu Rev Entomol. 1983;28:319–35.
  • [8]Patz JA, Daszak P, Tabor GM, Aquirre AA, Pearl M, Epstein J et al.. Unhealthy landscapes: Policy recommendations on land Use change and infectious disease emergence. Environ Health Perspect. 2004; 112(10):1092-8.
  • [9]Davis L, Boersma P, Court G. Satellite telemetry of the winter migration of Adélie penguins Pygoscelis adeliae. Polar Biol. 1996; 16(3):221-5.
  • [10]Roper TJ, Ostler JR, Schmid TK, Christian SF. Sett use in european badger meles meles. Behaviour. 2001; 138(2):173-87.
  • [11]Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG et al.. Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol. 2004; 19(6):334-43.
  • [12]White GC, Garrott RA. Analysis of wildlife radiotracking data. 1990.
  • [13]Rodgers AR. Tracking animals with GPS: the first ten years. Tracking animals with GPS. Sibbald AM, Gordon IL, editors. The Macaulay Institute, Aberdeen, Scotland; 2001.
  • [14]Recio MR, Mathieu R, Maloney R, Seddon PJ. Cost comparisoon between GPS and VHF based telemetry: case study of feral cats Felis catus in New Zealand. N Z J Ecol. 2011; 35(1):114-7.
  • [15]Fancy SG, Pank LF, Douglas DC, Curby CH, Gerner GW, Amstrup SC et al.. Satellite telemetry: a new tool for wildlife research and management. United States Fish and Wildlife Service Research Publications. 1988; 172:1-54.
  • [16]Hulbert IAR, French J. The accuracy of GPS for wildlife telemetry and habitat mapping. J Appl Ecol. 2001; 38:869-78.
  • [17]Frair JL, Nielsen SE, Merrill EH, Lele SR, Boyce MS, Munro RHM et al.. Removing GPS collar bias in habitat selection studies. J Appl Ecol. 2004; 41(2):201-12.
  • [18]Dussault C, Courtois R, Ouellet J, Huot J. Evaluation of GPS telemetry collar performance for habitat studies in the boreal forest. Wildl Soc Bull. 1999; 27(4):965-72.
  • [19]Gamo RS, Rumble MA, Lindzey F, Stefanich M. GPS radio collar 3D performance as influenced by forest structure and topography. Biotelemetry. 2000; 15:464-73.
  • [20]D’Eon RG, Serrouya GS, Kochanny CO. GPS radiotelemetry error and bias in mountainous terrain. Wildl Soc Bull. 2002; 30(2):430-9.
  • [21]Guillemette M, Woakes A, Flagstad A, Butler PJ. Effects of data-loggers implanted for a full year in female common Eiders. Condor. 2002; 104:448-52.
  • [22]Reynolds DR, Riley JR. Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput Electron Agric. 2002; 35:271-307.
  • [23]Bridger CJ, Booth RK. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behaviour. Rev Fish Sci. 2003; 11:13-34.
  • [24]Zavalaga CB, Halls JN, Mori GP, Taylor SA, Dell’Omo G. At-sea movement patterns and diving behaviour of Peruvian boobies Sula variegata in northern Peru. Mar Ecol Prog Ser. 2010; 404:259-74.
  • [25]Witte TH, Wilson AM. Accyracy of non-differential GPS for the determination of speed over ground. J Biomech. 2004; 37:1891-8.
  • [26]Kramer DL, McLaughlin RL. The behavioural ecology of intermittent locomotion. Am Zool. 2001; 41:137-53.
  • [27]Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA et al.. Building the bridge between animal movement and population dynamics. Philosophical Transactions of the Royal Society, Biological. Sciences. 2010; 365(1550):2289.
  • [28]Bramanti M, Dallantonia L, Papi F. A new technique to follow the flight paths of birds. J Exp Biol. 1988; 134:467-72.
  • [29]Wilson RP, Wilson MP. Dead reckoning- a new technique for determining pengui movements at sea. Meeresforschung- Reports on Marine Research. 1988; 32:155-8.
  • [30]Wilson RP, Wilson MP, Link R, Mempel H, Adams NJ. Determination of movements of African penguins spheniscus demersus using a compass system - dead reckoning may be an alternative to telemetry. J Exp Biol. 1991; 157:557-64.
  • [31]Wilson RP, Liebsch N, Davies IM, Quintana F, Weimerskirch H, Storch S et al.. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep-Sea Res II. 2007; 54:193-210.
  • [32]Wilson RP. Movements in Adelie penguins foraging for chicks at Ardley Island, Antarctica; circles withing spirals, wheels within wheels. Polar Biol. 2002; 15:75-87.
  • [33]Shiomi K, Sato K, Mitamura H, Arai N, Naito Y, Ponganis PJ. Effect of ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. Aquat Biol. 2008; 3:265-70.
  • [34]Johnson MP, Tyack PL. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J Ocean Eng. 2003; 28:3-12.
  • [35]Mitani Y, Sato K, Ito S, Cameron MF, Siniff DB, Naito Y. A method for reconstructing three-dimensional dive profiles of marine mammals using geomagnetic intensity data: results from two lactating Weddell seals. Polar Biol. 2003; 26:311-7.
  • [36]Sims DW, Southall EJ, Tarling GA, Metcalfe JD. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J Anim Ecol. 2005; 74:755-61.
  • [37]Bradshaw CJA, Hindell MA, Sumner MD, Michael K. Loyalty pays: potential life history consequences of fidelity to marine foraging regions by southern elephant seals. Anim Behav. 2004; 68:1349-60.
  • [38]Wilson RP, Shepard ELC, Liebsch N. Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger Species Res. 2008; 4:123-37.
  • [39]Ware C, Friedlaender AS, Nowacek DP. Shallow and deep lunge feeding of humpback whales in fjords of the West Antarctic Peninsula. Mar Mamm Sci. 2011; 27(3):587-605.
  • [40]Davis RW, Fuiman LA, Williams TM, Le Boeuf BJ. Three-dimensional movements and swimming activity of a northern elephant seal. Comp Biochem Physiol A. 2001; 129:759-70.
  • [41]Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Forman DW. Pushed for time or saving on fuel: fine-scale energy budgets shed light on currencies in a diving bird. Proc R Soc B Biol Sci. 2009; 276(1670):3149-55.
  • [42]Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y et al.. A new technique for monitoring the behaviour of free-ranging Adelie penguins. J Exp Biol. 2001; 204:685-90.
  • [43]Yoda K, Sato K, Niizuma Y, Kurita M, Bost CA, Le Maho Y et al.. Precise monitoring of porpoising behaviour of Adelie penguins determined using acceleration data loggers. J Exp Biol. 1999; 202:3121-6.
  • [44]Sato K, Mitani Y, Cameron MF, Siniff DB, Naito Y. Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions. J Exp Biol. 2003; 206:1461-70.
  • [45]Ropert-Coudert Y, Grémillet D, Kato A. Swim speeds of free-ranging great cormorants. Mar Biol. 2006; 149:415-22.
  • [46]Eckert SA. Swim speed and movement patterns of gravid leatherback sea turtles (Dermochelys coriacea) at St Croix, US Virgin Islands. J Exp Biol. 2002; 205:3689-97.
  • [47]Hassrick JL, Crocker DE, Zeno RL, Blackwell SB, Costa DP, Le Boeuf BJ. Swimming speed and foraging strategies of northern elephant seals. Deep-Sea Res II. 2007; 54:369-83.
  • [48]Ponganis PJ, Ponganis EP, Ponganis KV, Kooyman GL, Gentry RL, Trillmich F. Swimming velocities in otariids. Can J Zool. 1990; 68:2105-12.
  • [49]Wilson RP, Pütz K, Bost CA, Culik BM, Bannasch R, Reins T et al.. Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner by candle-light? Mar Ecol Prog Ser. 1993; 94:101-4.
  • [50]Shepard ELC, Wilson RP, Liebsch N, Quintana F, Laich AG, Lucke K. Flexible paddle sheds new light on speed: a novel method for the remote measurement of swim speed in aquatic animals. Endanger Species Res. 2008; 4:157-64.
  • [51]Dall’Antonia L, Dall’Antonia P, Benvenuti S, Ioale P, Massa B, Banadonna F. The homing behaviour of Cory’s shearwaters (Calonectris diomedea) studied by means of a direction recorded. J Exp Biol. 1995; 198:359-62.
  • [52]Bidder OR, Soresina M, Shepard ELC, Halsey LG, Quintana F, Gomez Laich A et al.. The need for speed: testing overall dynamic body acceleration for informing animal travel rates in terrestrial dead-reckoning. Zoology. 2012; 115:58-64.
  • [53]Bidder OR, Qasem LA, Wilson RP. On Higher Ground: How Well Can Dynamic Body Acceleration Derermine Speed in Variable Terrain? PLoS One. 2012; doi:10.1371/journal.pone.0050556.
  • [54]Campbell HA, Gao L, Bidder OR, Hunter J, Franklin CE. Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species. J Exp Biol. 2013; 216:4501-6.
  • [55]Brown DD, Kays R, Wikelski M, Wilson RP, Klimley AP. Observing the unwatchable through acceleration logging of animal behavior. Anim Biotechnol. 2013; 1:20.
  • [56]Shepard ELC, Wilson RP, Albareda D, Glesis A, Laich AG, Halsey LG et al.. Identification of animal movement patterns using tri-axial accelerometry. Endanger Species Res. 2008; 10:47-60.
  • [57]Shepard ELC, Wilson RP, Halsey LG, Quintana F, Gomez Laich A, Gleiss AC et al.. Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol. 2008; 4:235-41.
  • [58]Tanaka H, Takagi Y, Naito Y. Swimming speeds and buoyancy compensation of migrating adult chum salmon Oncorhynchus keta revealed by speed/depth/acceleration data logger. J Exp Biol. 2001; 204:2895-3904.
  • [59]Fang L, Antsaklis PJ, Montestruque LA, McMickell MB, Lemmon M, Sun Y et al. Design of a wireless assisted pedestrian dead reckoning system - the NavMote experience. IEEE Transactions on Instrumentation and Measurement .2005. p. 2342–58.
  • [60]Qasem LA, Cardew A, Wilson A, Griffiths IW, Halsey LG, Shepard ELC et al.. Tri-Axial Dynamic Accleration as a Proxy for Animal Energy Expenditure; Should we be summing or calculating the vector? PLoS One. 2012; 7(2):e31187.
  • [61]Fourati H, Manamanni N, Afilal L, Handrich Y. Posture and body acceleration tracking by inertial and magnetic sensing: Application in behavioral analysis of free-ranging animals. Biomed Signal Process Control. 2011; 6(1):94-104.
  • [62]Noda T, Okuyama J, Koizumi T, Arai N, Kobayashi M. Monitoring attitude anddynamic acceleration of free-moving aquatic animals using a gyroscope. Aquat Biol. 2012; 16:265-75.
  • [63]Noda T, Kawabata Y, Arai N, Mitamura H, Watanabe S. Monitoring escape and feeding behaviours of a cruiser fish by inertial and magnetic sensors. PLoS One. 2013; 8(11):e79392.
  • [64]Noda T, Kawabata Y, Arai N, Mitamura H, Watanabe S. Animal-mounted gyroscope/accelerometer/magnetometer: In situ measurement of the movement performance of fast-start behaviour in fish. J Exp Mar Biol Ecol. 2013; 451:55-68.
  • [65]Park K, Chung D, Chung H, Lee JG. Dead reckoning navigation of a mobile robot using an indirect Kalman filter. IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, Washington, D. C; 1996.
  • [66]Jimenez AR, Seco F, Prieto C, Guevara J. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary; 2009.
  • [67]Randell C, Djiallis C, Muller H. Personal position measurement using dead reckoning. Seventh IEEE International Symposium on Wearable Computers, New York, USA; 2003.
  • [68]Caruso MJ. Applications of magnetic sensors for low cost compass systems. Position Location and Navigation Symposium, IEEE. Honeywell, SSEC, San Diego, CA, USA; 2000.
  • [69]Shiomi K, Narazaki T, Sato K, Shimatani K, Arai N, Ponganis PJ et al.. Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. Aquat Biol. 2010; 8:299-304.
  • [70]Watanuki Y, Niizuma Y, Gabrielsen GW, Sato K, Naito Y. Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proc R Soc. 2003; 270:483-8.
  • [71]Watanuki Y, Takahashi A, Daunt F, Wanless S, Harris M, Sato K et al.. Regulation of stroke and glide in a foot-propelled avian diver. J Exp Biol. 2005; 208:2207-16.
  • [72]Denne W. Magnetic compass deviation and correction. 3rd ed. Sheridan House, Dobbs Ferry, NY; 1979.
  • [73]Caruso MJ. Application of magnetoresistive sensors in navigation systems, SAE Transaction, 1997. vol. 106, pp.1092-1098.
  • [74]Skvortzov VY, Lee H, Bang S, Lee Y. Application of Electronic Compass for Moble Robot in an Indoor Environment. IEEE International Conference on Robotics and Automation, Roma, Italy; 2007.
  • [75]Hoff B, Azuma R. Autocalibration of an Electronic Compass in an Outdoor Augmented Reality System. Proceedings of IEEE and ACM International Symposium on Augmented Reality, Munich, Germany; 2000.
  • [76]Van Bergeijk J, Goense D, Keesman KJ, Speelman L. Digital filters to integrate global positioning system and dead reckoning. J Agric Eng Res. 1998; 70:135-43.
  • [77]Vasconcelos JF, Elkaim G, Silvestre C, Oliveira P. Geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Trans Aerosp Electron Syst. 2011; 47:1293-306.
  • [78]Renaudin V, Afzal MH, Lachapelle G. Complete triaxis magnetometer calibration in the magnetic domain. Hindawi Journal of Sensors. 2010; doi:10.1155/2010/967245.
  • [79]Dong W, Lim KY, Goh YK, Nguyen KD, Chen I, Yeo SH et al.. A low-cost motion tracker and its error analysis. IEEE International Conference on Robotics and Automation, Pasadena, CA; 2008.
  • [80]Guo P, Qiu H, Yang Y, Ren Z. The soft iron and hard iron calibration method using extended kalman filter for attitude and heading reference system. Position, Location and Natigation Symposium, 2008. IEEE/ION, Monterey, CA; 2008.
  • [81]A non-linear, two step estimation algorithm for calibrating solid-state strapdown magnetometers. 2001.
  • [82]Xiang H, Tian L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst Eng. 2011; 108:174-90.
  • [83]Merkel J, Säll J. Indoor Navigation Using Accelerometer abd Magnetometer. Linköpings Universitet, Linköpings Universitet; 2011.
  • [84]Kwanmuang L, Ojeda L, Borenstein J. Magnetometer-enganced personal locator for tunnels and gps-denied outdoor environments. Proceedings of the SPIE Defense, Security and Sensing; Unmanned Systems Technology XIII; Conference DS117: Unmanned, Robotic and Layered Systems, Orlando, April 25–29, 20112011.
  • [85]Frair JL, Fieberg J, Hebblewhite M, Cagnacci DN, Pedrotti L. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philosophical Transactions of the Royal Society, Biological Sciences. 2010; 365:2187-200.
  • [86]Ganskopp DC, Johnson DD. GPS error in studies addressing animal movements and activities. Rangel Ecol Manag. 2007; 60:350-8.
  • [87]Grémillet D, Dell’Omo G, Ryan PG, Peters G, Ropert-Coudert Y, Weeks SJ. Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar Ecol Prog Ser. 2004; 268:265-79.
  • [88]Schofield G, Bishop MA, MacLean G, Brown P, Baker M, Katselidis KA et al.. Novel GPS tracking of sea turtles as a tool for conservation management. J Exp Mar Biol Ecol. 2007; 347:58-68.
  • [89]Weimerskirch H, Bonadonna F, Bailleul F, Mabille G, Dell’Omo G, Lipp HP. GPS tracking of foraging albatrosses. Science. 2002; 295:1259.
  • [90]Garcia-Ripolles C, Lopez-Lopez P, Urios V. First description of migration and winterinf of adlt Egyptian vultures Neophron percnopterus tracked by GPS satellite telemetry. Bird Study. 2010; 57:261-5.
  • [91]Nelson ME, Mech LD, Frame PF. Tracking of white-tailed deer migration by global positioning system. J Mammal. 2004; 85:505-10.
  • [92]de Beer Y, Kilian W, Versfeld W, van Aarde RJ. Elephants and low rainfall alter woody vegetation in Etosha National Park Namibia. J Arid Environ. 2006; 64:412-21.
  • [93]Tomkiewicz SM, Fuller MR, Kie JG, Bates KK. Global positioning system and associated technologies in animal behaviour and ecological research. Proc R Soc. 2010; 365:2163-76.
  • [94]Moen R, Pastor J, Cohen Y, Schwartz CC. Effects of moose movement and habitat use on GPS collar performance. J Wildl Manag. 1996; 60:659-68.
  • [95]Cargnelutti B, Coulon A, Hewison AJM, Goulard M, Angibault JM, Morellet N. Testing global positioning system performance for wildlife monitoring using mobile collars and known reference points. J Wildl Manag. 2007; 71:1380-7.
  • [96]Sager-Fradkin KA, Jenkins KJ, Hoffman RA, Happe PJ, Beecham JJ, Wright RG. Fix success and accuracy of global positioning system collars in old-growth temperate coniferous forests. J Wildl Manag. 2007; 71:1298-308.
  • [97]Heard DC, Ciarniello LM, Seip DR. Grizzly bear behavior and global positioning system collar fix rates. J Wildl Manag. 2008; 72:596-602.
  • [98]Hebblewhite M, Percy M, Merrill EH. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the Central Canadian Rockies. J Wildl Manag. 2007; 71:2026-33.
  • [99]Walker JS, Jones MW, Laramee RS, Holton MD, Shepard ELC, Williams HJ et al. Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in ‘Daily Diary’ tags. submitted to Movement Ecology. in review.
  • [100]Rowcliffe JM, Carbone C, Kays R, Branstauber B, Jansen PA. Bias in estimating animal travel distance: the effect of sampling frequency. Methods Ecol Evol. 2012; 3:653-62.
  • [101]Whittington J. St. Clair CC, Mercer G. Path tortuosity and the permeability of roads and trails to wolf movement. Ecology and. Society. 2004; 9(1):4.
  • [102]Bovet P, Benhamou S. Spatial analysis of animals’ movements using a correlated random walk model. J Theor Biol. 1988; 131:419-33.
  • [103]Benhamou S. How to reliably estimate the tortuosity of an animal’s path:: straightness, sinuosity, or fractal dimension? J Theor Biol. 2004; 229(2):209-20.
  • [104]Codling EA, Hill NA. Sampling rate effects on measurement of correlated and biased random walks. J Theor Biol. 2005; 233:573-88.
  • [105]Zalewski A, Jedrzejewski W, Jedrzejewski B. Pine martens home ranges, numbers and predation on vertebrates in a deciduous forest Bialowieza National Park. Poland Annales Zoologici Fennici. 1995; 32:131-44.
  • [106]Musiani M, Okarma H. Jedrzejewski. Speed and actual distances travelled by radiocollared wolves in Bialowieza Primeval Forest (Poland). Acta Theriol. 1998; 43:409-16.
  • [107]Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D et al.. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol. 2013; 1:4.
  • [108]Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE. The physics of foraging: An introduction to random searches and biological envounters. Cambridge University Press, Cambridge; 2011.
  • [109]Hurford A. GPS measurement error gives rise to spurious 180 turning angles and strong directional biases in animal movement data. PLoS One. 2009; 4:e5632.
  • [110]Mills KJ, Patterson BR, Murray DL. Effects of variable sampling frequencies on GPS transmitter efficiency and estimated wolf home range size and movement distance. Wildl Soc Bull. 2006; 34:1463-9.
  • [111]Johnson DD, Ganskopp DC. GPS collar sampling frequency: Effects on measures of resource use. Rangel Ecol Manag. 2008; 61:226-31.
  • [112]Lonergan M, Fedak M, McConnell B. The effects of interpolation error and location quality on animal track reconstruction. Mar Mamm Sci. 2009; 25:275-82.
  • [113]Hebblewhite M, Haydon DT. Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society, Biological Sciences. 2010; 365:2303-12.
  • [114]Atkinson RPD, Rhodes CJ, Macdonald DW, Anderson RM. Scale-free dynamics in the movement patterns of jackals. Oikos. 2002; 98(1):134-40.
  • [115]Fritz H, Said S, Weimerskirch H. Scale–dependent hierarchical adjustments of movement patterns in a long–range foraging seabird. Proc R Soc Lond Ser B. 2003; 270(1520):1143-8.
  • [116]Weimerskirch H, Pinaud D, Pawlowski F, Bost C. Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the Wandering albatross. Am Nat. 2007; 170:734-43.
  • [117]Mårell A, Ball JP, Hofgaard A. Foraging and movement paths of female reindeer: insights from fractal analysis, correlated random walks, and Lévy flights. Can J Zool. 2002; 80(5):854-65.
  • [118]Ramos-Fernández G, Mateos JL, Miramontes O, Coch G. Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behav Ecol Sociobiol. 2004; 55:223-30.
  • [119]Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE. Levy flight search patterns of wandering albatrosses. Nature. 1996; 381(6581):413-5.
  • [120]Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJA, Pitchford JW et al.. Scaling laws of marine predator search behaviour. Nature. 2008; 451:1098-102.
  • [121]Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J. State-space models of individual animal movement. Trends Ecol Evol. 2008; 23(2):87-94.
  • [122]Reynolds AM, Rhodes CJ. The Levy flight paradigm: Randm search patterns and mechanisms. Ecology. 2009; 90:877-87.
  • [123]Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O. Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci. 2008; 105(49):19060-5.
  文献评价指标  
  下载次数:0次 浏览次数:15次