Molecular Cytogenetics | |
Prolonged exposure to acid and bile induces chromosome abnormalities that precede malignant transformation of benign Barrett’s epithelium | |
Kiron M Das1  Hana Aviv2  Manisha Bajpai1  | |
[1] Division of Gastroenterology and Hepatology, Department of Medicine, UMDNJ-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA;Department of Pathology, UMDNJ-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA | |
关键词: Genetic instability; Chromosomal aberrations; Polyploidy; Aneuploidy; Barrett’s epithelium carcinogenesis model; BAR-T; Barrett’s epithelium; | |
Others : 1151186 DOI : 10.1186/1755-8166-5-43 |
|
received in 2012-08-07, accepted in 2012-10-03, 发布年份 2012 | |
【 摘 要 】
Barrett’s esophagus (BE) is an asymptomatic, pre-malignant condition of the esophagus that can progress to esophageal adenocarcinoma (EAC). BE arises typically in individuals with long-standing gastroesophageal reflux disease (GERD). The neoplastic progression of BE has been extensively studied histologically and defined as a metaplasia- dyplasia- carcinoma sequence. However the genetic basis of this process is poorly understood. It is conceived that preclinical models of BE may facilitate discovery of molecular markers due to ease of longitudinal sampling. Clinical markers to stratify the patients at higher risk are vital to institute appropriate therapeutic intervention since EAC has very poor prognosis. We developed a dynamic in-vitro BE carcinogenesis (BEC) model by exposing naïve Barrett’s epithelium cell line (BAR-T) to acid and bile at pH4 (B4), 5min/day for a year. The BEC model acquired malignant characteristics after chronic repeated exposure to B4 similar to the sequential progression of BE to EAC in vivo.
【 授权许可】
2012 Bajpai et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150406040835979.pdf | 320KB | download | |
Figure 1. | 53KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Spechler SJ, Zeroogian JM, Antonioli DA, Wang HH, Goyal RK: Prevalence of metaplasia at the gastro-oesophageal junction. Lancet 1994, 344:1533-1536.
- [2]Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG, Rabinovitch PS, Reid BJ: Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 1999, 22:106-109.
- [3]Neshat K, Sanchez CA, Galipeau PC, Blount PL, Levine DS, Joslyn G, Reid BJ: p53 mutations in Barrett’s adenocarcinoma and high-grade dysplasia. Gastroenterology 1994, 106:1589-1595.
- [4]Barrett MT, Sanchez CA, Galipeau PC, Neshat K, Emond M, Reid BJ: Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 1996, 13:1867-1873.
- [5]Barrett MT, Galipeau PC, Sanchez CA, Emond MJ, Reid BJ: Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene 1996, 12:1873-1878.
- [6]Wong DJ, Barrett MT, Stoger R, Emond MJ, Reid BJ: p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res 1997, 57:2619-2622.
- [7]Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS, Rabinovitch PS, Reid BJ: 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 1996, 93:7081-7084.
- [8]Jankowski JA, Provenzale D, Moayyedi P: Esophageal adenocarcinoma arising from Barrett’s metaplasia has regional variations in the west. Gastroenterology 2002, 122:588-590.
- [9]Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Blount PL, Reid BJ: The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res 2004, 64:629-7633.
- [10]Pavlov K, Maley CC: New models of neoplastic progression in Barrett’s oesophagus. Biochem Soc Trans 2010, 38:331-336.
- [11]Huo X, Juergens S, Zhang X, Rezaei D, Yu C, Strauch ED, Wang JY, Cheng E, Meyer F, Wang DH, Zhang Q, Spechler SJ, Souza RF: Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-kappaB activation in benign Barrett’s epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011, 301:G278-G286.
- [12]Zhang HY, Hormi-Carver K, Zhang X, Spechler SJ, Souza RF: In benign Barrett’s epithelial cells, acid exposure generates reactive oxygen species that cause DNA double-strand breaks. Cancer Res 2009, 69:9083-9089.
- [13]Jaiswal KR, Morales CP, Feagins LA, Gandia KG, Zhang X, Zhang HY, Hormi-Carver K, Shen Y, Elder F, Ramirez RD, Sarosi GA Jr, Spechler SJ, Souza RF: Characterization of telomerase-immortalized, non-neoplastic, human Barrett’s cell line (BAR-T). Dis Esophagus 2007, 20:256-264.
- [14]Das KM, Kong Y, Bajpai M, Kulkarni D, Geng X, Mishra P, Banerjee D, Hirshfield K: Transformation of benign Barrett’s epithelium by repeated acid and bile exposure over 65 weeks: a novel in vitro model. Int J Cancer 2011, 128:274-282.
- [15]Mamaeva SE: Karyotypic evolution of cells in culture: a new concept. Int Rev Cytol 1998, 178:1-40.
- [16]Nielsen KV, Madsen MW, Briand P: In vitro karyotype evolution and cytogenetic instability in the non-tumorigenic human breast epithelial cell line HMT-3522. Cancer Genet Cytogenet 1994, 78:189-199.
- [17]Hunt CR, Sim JE, Sullivan SJ, Featherstone T, Golden W, Von Kapp-Herr C, Hock RA, Gomez RA, Parsian AJ, Spitz DR: Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res 1998, 58:3986-3992.
- [18]Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GD, Hyun W: Persistent oxidative stress in chromosomally unstable cells. Cancer Res 2003, 63:3107-3111.
- [19]Radford IR: Chromosomal rearrangement as the basis for human tumourigenesis. Int J Radiat Biol 2004, 80:543-557.
- [20]Bianchi NO: Y chromosome structural and functional changes in human malignant diseases. Mutat Res 2009, 68:221-227.
- [21]Wu Y, Xue Y, Pan J: Y-chromosome loss in acute promyelocytic leukemia. Cancer Genet Cytogenet 2005, 157:90-91.
- [22]Kujawski M, Jarmuz M, Rydzanicz M, Szukala K, Wierzbicka M, Grenman R, Golusinski W, Szyfter K: Frequent chromosome Y loss in primary, second primary and metastatic squamous cell carcinomas of the head and neck region. Cancer Lett 2004, 208:95-101.
- [23]Garewal HS, Sampliner R, Liu Y, Trent JM: Chromosomal rearrangements in Barrett’s esophagus. A premalignant lesion of esophageal adenocarcinoma. Cancer Genet Cytogenet 1989, 42:281-286.
- [24]Walch AK, Zitzelsberger HF, Bruch J, Keller G, Angermeier D, Aubele MM, Mueller J, Stein H, Braselmann H, Siewert JR, Hofler H, Werner M: Chromosomal imbalances in Barrett’s adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. Am J Pathol 2000, 156:555-566.
- [25]Bajpai M, Liu J, Geng X, Souza RF, Amenta PS, Das KM: Repeated exposure to acid and bile selectively induces colonic phenotype expression in a heterogeneous Barrett’s epithelial cell line. Lab Invest 2008, 88:643-651.
- [26]Johansson B, Heim S, Mandahl N, Mertens F, Mitelman F: Trisomy 7 in nonneoplastic cells. Genes Chromosomes Cancer 1993, 6:199-205.
- [27]Garewal H, Meltzer P, Trent J, Prabhala R, Sampliner R, Korc M: Epidermal growth factor receptor overexpression and trisomy 7 in a case of Barrett’s esophagus. Dig Dis Sci 1990, 35:1115-1120.
- [28]Nicholson RI, Gee JM, Harper ME: EGFR and cancer prognosis. Eur J Cancer 2001, 37(Suppl 4S):9-15.
- [29]Schuuring E: The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes–a review. Gene 1995, 159:83-96.
- [30]Jin Y, Jin C, Law S, Chu KM, Zhang H, Strombeck B, Yuen AP, Kwong YL: Cytogenetic and fluorescence in situ hybridization characterization of clonal chromosomal aberrations and CCND1 amplification in esophageal carcinomas. Cancer Genet Cytogenet 2004, 148:21-28.
- [31]Sarova I, Brezinova J, Zemanova Z, Izakova S, Lizcova L, Malinova E, Berkova A, Cermak J, Maaloufova J, Novakova L, Michalova K: Cytogenetic manifestation of chromosome 11 duplication/amplification in acute myeloid leukemia. Cancer Genet Cytogenet 2010, 199:121-127.
- [32]Lee HO, Davidson JM, Duronio RJ: Endoreplication: polyploidy with purpose. Genes Dev 2009, 23:2461-2477.
- [33]Storchova Z, Pellman D: From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004, 5:45-54.
- [34]Reid BJ, Blount PL, Rubin CE, Levine DS, Haggitt RC, Rabinovitch PS: Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology 1992, 102:1212-1219.
- [35]Reid BJ, Haggitt RC, Rubin CE, Rabinovitch PS: Barrett’s esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 1987, 93:1-11.
- [36]Rabinovitch PS, Longton G, Blount PL, Levine DS, Reid BJ: Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am J Gastroenterol 2001, 96:3071-3083.
- [37]Nisitani S, Hosokawa M, Sasaki MS, Yasuoka K, Naiki H, Matsushita T, Takeda T: Acceleration of chromosome aberrations in senescence-accelerated strains of mice. Mutat Res 1990, 237:221-228.
- [38]Tucker JD, Spruill MD, Ramsey MJ, Director AD, Nath J: Frequency of spontaneous chromosome aberrations in mice: effects of age. Mutat Res 1999, 425:135-141.
- [39]Aubert G, Lansdorp PM: Telomeres and aging. Physiol Rev 2008, 88:557-579.
- [40]Thorpe PH, Gonzalez-Barrera S, Rothstein R: More is not always better: the genetic constraints of polyploidy. Trends Genet 2007, 23:263-266.
- [41]Reid BJ, Prevo LJ, Galipeau PC, Sanchez CA, Longton G, Levine DS, Blount PL, Rabinovitch PS: Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol 2001, 96:2839-2848.
- [42]Krishnadath KK, Tilanus HW, van Blankenstein M, Hop WC, Teijgeman R, Mulder AH, Bosman FT, van Dekken H: Accumulation of genetic abnormalities during neoplastic progression in Barrett’s esophagus. Cancer Res 1995, 55:1971-1976.
- [43]Riegman PH, Vissers KJ, Alers JC, Geelen E, Hop WC, Tilanus HW, van Dekken H: Genomic alterations in malignant transformation of Barrett’s esophagus. Cancer Res 2001, 61:3164-3170.
- [44]Paulson TG, Maley CC, Li X, Li H, Sanchez CA, Chao DL, Odze RD, Vaughan TL, Blount PL, Reid BJ: Chromosomal instability and copy number alterations in Barrett’s esophagus and esophageal adenocarcinoma. Clin Cancer Res 2009, 15:3305-3314.
- [45]Gerstein AV, Almeida TA, Zhao G, Chess E, Shih Ie M, Buhler K, Pienta K, Rubin MA, Vessella R, Papadopoulos N: APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 2002, 34:9-16.
- [46]Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007, 318:1108-1113.
- [47]Kim CJ, Song JH, Cho YG, Kim YS, Kim SY, Nam SW, Yoo NJ, Lee JY, Park WS: Somatic mutations of the beta-TrCP gene in gastric cancer. APMIS 2007, 115:127-133.
- [48]Dhawan P, Richmond A: A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002, 277:7920-7928.
- [49]Koch A, Waha A, Hartmann W, Hrychyk A, Schuller U, Wharton KA Jr, Fuchs SY, von Schweinitz D, Pietsch T: Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin Cancer Res 2005, 11:4295-4304.
- [50]Ougolkov A, Zhang B, Yamashita K, Bilim V, Mai M, Fuchs SY, Minamoto T: Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst 2004, 96:1161-1170.
- [51]Muerkoster S, Arlt A, Sipos B, Witt M, Grossmann M, Kloppel G, Kalthoff H, Folsch UR, Schafer H: Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 2005, 65:1316-1324.
- [52]Spiegelman VS, Tang W, Chan AM, Igarashi M, Aaronson SA, Sassoon DA, Katoh M, Slaga TJ, Fuchs SY: Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling. J Biol Chem 2002, 277:36624-36630.
- [53]Kim MS, Kim SS, Jung ST, Park JY, Yoo HW, Ko J, Csiszar K, Choi SY, Kim Y: Expression and purification of enzymatically active forms of the human lysyl oxidase-like protein 4. J Biol Chem 2003, 278:52071-52074.
- [54]Holtmeier C, Gorogh T, Beier U, Meyer J, Hoffmann M, Gottschlich S, Heidorn K, Ambrosch P, Maune S: Overexpression of a novel lysyl oxidase-like gene in human head and neck squamous cell carcinomas. Anticancer Res 2003, 23:2585-2591.
- [55]Neri A, Chang CC, Lombardi L, Salina M, Corradini P, Maiolo AT, Chaganti RS, Dalla-Favera R: B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappa B p50. Cell 1991, 67:1075-1087.
- [56]Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P: Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 1990, 109:787-795.
- [57]Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y: Accumulation of genetic alterations and progression of primary breast cancer. Cancer Res 1991, 51:5794-5799.
- [58]Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JI, Isaacs WB: Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990, 87:8751-8755.
- [59]Zhang WD, Hirohashi S, Tsuda H, Shimosato Y, Yokota J, Terada M, Sugimura T: Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. Jpn J Cancer Res 1990, 81:108-111.
- [60]Seabright M: A rapid banding technique for human chromosomes. Lancet 1971, 2:971-972.