期刊论文详细信息
Radiation Oncology
Histone deacetylase inhibition sensitizes osteosarcoma to heavy ion radiotherapy
Jürgen Debus4  Albrecht Stenzinger1  Peter E. Huber4  Wilko Weichert3  Volker Ehemann1  Andreas E. Kulozik3  Eva Roth4  Anne Dittmar4  Markus Thiemann4  Susanne Oertel4  Claudia Blattmann2 
[1] Institute of Pathology, University of Heidelberg, Heidelberg, Germany;Pädiatrie 5, Olgahospital, Kriegsbergstr. 62, Stuttgart, 70174, Germany;National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany;Department of Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
关键词: Mouse model;    Radiosensitization;    Suberoylanilide hydroxamic acid;    Histone deacetylase inhibition;    Carbon ion radiotherapy;    Osteosarcoma;   
Others  :  1228499
DOI  :  10.1186/s13014-015-0455-z
 received in 2015-05-05, accepted in 2015-07-06,  发布年份 2015
PDF
【 摘 要 】

Background

Minimal improvements in treatment or survival of patients with osteosarcoma have been achieved during the last three decades. Especially in the case of incomplete tumor resection, prognosis remains poor. Heavy ion radiotherapy (HIT) and modern anticancer drugs like histone deacetylase inhibitors (HDACi) have shown promising effects in osteosarcoma in vitro. In this study, we tested the effect of HIT and the combination of HIT and the HDACi suberoylanilide hydroxamic acid (SAHA) in a xenograft mouse model.

Methods

Osteosarcoma xenografts were established by subcutaneous injection of KHOS-24OS cells and treated with either vehicle (DMSO), SAHA, HIT or HIT and SAHA. Tumor growth was determined and tumor necrosis, proliferation rate, apoptotic rate as well as vessel density were evaluated.

Results

Here, we show that the combination of HIT and SAHA induced a significant delay of tumor growth through increased rate of apoptosis, increased expression of p53 and p21 Waf1/Cip1 , inhibition of proliferation and angiogenesis compared to tumors treated with HIT only.

Conclusion

HIT and in particular the combination of HIT and histone deacetylase inhibition is a promising treatment strategy in OS and may be tested in clinical trials.

【 授权许可】

   
2015 Blattmann et al.

【 预 览 】
附件列表
Files Size Format View
20151016082656613.pdf 1672KB PDF download
Fig. 8. 17KB Image download
Fig. 7. 50KB Image download
Fig. 6. 132KB Image download
Fig. 5. 65KB Image download
Fig. 4. 37KB Image download
Fig. 3. 25KB Image download
Fig. 2. 31KB Image download
Fig. 1. 19KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radio-biological benefits. Rev Mod Phys. 2010; 82:383.
  • [2]Hundsdoerfer P, Albrecht M, Rühl U, Fengler R, Kulozik AE, Henze G. Long-term outcome after polychemotherapy and intensive local radiation therapy of high-grade osteosarcoma. Eur J Cancer. 2009; 45(14):2447-51.
  • [3]Blattmann C, Oertel S, Schulz-Ertner D, Rieken S, Haufe S, Ewerbeck V et al.. Non-randomized therapy trial to determine the safety and efficacy of heavy ion therapy in patients with non-resectable osteosarcomas. BMC Cancer. 2010; 10:96. BioMed Central Full Text
  • [4]Sugahara S, Kamada T, Imai R, Tsuji H, Kameda N, Okada T et al.. Carbon ion radiotherapy for localized primary sarcoma of the extremities: results of a phase I/II trial. Working group for the bone and soft tissue sarcomas. Radiother Oncol. 2012; 105(2):226-31.
  • [5]Matsunobu A, Imai R, Kamada T, Imaizumi T, Tsuji H, Tsujii H et al.. Impact of carbon ion radiotherapy for unresectable osteosarcoma of the trunk. Working group for bone and soft tissue sarcomas. Cancer. 2012; 118(18):4555-63.
  • [6]Combs SE, Kessel KA, Herfarth K, Jensen A, Oertel S, Blattmann C et al.. Treatment of pediatric patients and young adults with particle therapy at the Heidelberg Ion Therapy Center (HIT): establishment of workflow and initial clinical data. Radiat Oncol. 2012; 7:170. BioMed Central Full Text
  • [7]Perego P, Zuco V, Gatti L, Zunino F. Sensitization of tumor cells by targeting histone deacetylases. Biochem Pharmacol. 2012; 83(8):987-94.
  • [8]Entin-Meer M, Yang X, Vandenburg SR, Lamborn KR, Nudelman A, Rephaeli A et al.. In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro Oncol. 2007; 9:82-8.
  • [9]Folkvord S, Ree AH, Furre T, Halvorsen T, Flatmark K. Radiosensitization by SAHA in experimental colorectal carcinoma models - in vivo effects and relevance of histone acetylation status. Int J Radiat Oncol Biol Phys. 2009; 74:546-52.
  • [10]Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL et al.. Histone deacetylase inhibitors radiosensitize human melanoma by suppressing DNA repair activity. Clin Cancer Res. 2005; 11:4912-22.
  • [11]Thiemann M, Oertel S, Ehemann V, Weichert W, Stenzinger A, Bischof M et al.. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model. Radiat Oncol. 2012; 7:52. BioMed Central Full Text
  • [12]Slingerland M, Guchelaar HJ, Gelderblom H. Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs. 2014; 25(2):140-9.
  • [13]Blattmann C, Thiemann M, Stenzinger A, Christmann A, Roth E, Ehemann V et al.. Radiosensitization by Histone Deacetylase inhibition in an Osteosarcoma mouse model. Strahlenther Onkol. 2013; 189(11):957-66.
  • [14]Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M et al.. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2010; 78:237-45.
  • [15]Oertel S, Thiemann M, Richter K, Weber KJ, Huber PE, Perez RL et al.. Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sacroma cell lines. Radiat Oncol. 2011; 6:119. BioMed Central Full Text
  • [16]Battmann C, Thiemann T, Stenzinger A, Weichert W, Bischof M, Lopez Perez R et al.. Radiosensitization by Histone Deacetylase Inhibition in an Osteosarcoma mouse model. Strahlenther Onkol. 2013; 189(11):957-66.
  • [17]Bielack SS, Carrle D, Hardes J, Schuck A, Paulussen M. Bone tumors in adolescents and young adults. Curr Treat Options Oncol. 2008; 9:67-80.
  • [18]Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K et al.. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002; 20:776-90.
  • [19]Shabason JE, Tofilon PJ, Camphausen K. Grand rounds at the national institutes of health: HDAC inhibitors as radiation modifiers, from bench to clinic. J Cell Mol Med. 2011; 15:2735.
  • [20]Bots M. R.W. Johnstone, Rational combinations using HDAC inhibitors. Clin. Cancer Res. 2009; 15:3970-7.
  • [21]Jensen AD, Münter MW, Debus J. Review of clinical experience with ion beam radiotherapy. Br J Radiol. 2011; 84(Spec No 1):35-47.
  • [22]Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Birn. Proc Natl Acad Sci U S A. 2005; 44:16090-5.
  • [23]Lee CK, Wang S, Huang X, Ryder J, Liu B. HDAC inhibition synergistically enhances alkylator-induced DNA damage responses and apoptosis in multiple myeloma cells. Cancer Lett. 2010; 296:233-40.
  • [24]D'Acunto CW, Fontanella B, Rodriquez M, Taddei M, Parente L, Petrella A. Histone deacetylase inhibitor FR235222 sensitizes human prostate adenocarcinoma cells to apoptosis through up-regulation of Annexin A1. Cancer Lett. 2010; 295:85-91.
  • [25]Frew AJ, Johnstone RW, Bolden JE. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett. 2009; 280:125-33.
  • [26]Dickinson M, Johnstone RW. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs. 2010; 28:3-20.
  • [27]Henderson C, Mizzau M, Paroni G, Maestro R, Schneider C, Brancolini C. Role of caspases, Bid and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J Biol Chem. 2003; 278:12579-89.
  • [28]Johnstone RW, Licht JD. Histone seacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell. 2003; 4:13-8.
  • [29]Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002; 2:594-604.
  • [30]Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y et al.. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol. 2006; 26:2782-90.
  • [31]Kawano T, Akiyama M, Agawa-Ohta M, Mikami-Terao Y, Iwase S, Yanagisawa T et al.. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol. 2010; 37:787-95.
  • [32]Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA et al.. MK-1775, a novel wee1 kinase inhibitor radiosensitizes p53-defective human tumor cells. Clin Cancer Res. 2011; 17:5638-48.
  • [33]Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev. 2006; 5:769-84.
  • [34]Mottet D, Castronovo V. Histone deacetylases: anti-angiogenic targets in cancer therapy. Curr Cancer Drug Targets. 2010;10(8):898–913.
  文献评价指标  
  下载次数:58次 浏览次数:16次