| Molecular Pain | |
| α9-nicotinic acetylcholine receptors contribute to the maintenance of chronic mechanical hyperalgesia, but not thermal or mechanical allodynia | |
| Macdonald J Christie1  Sarasa Mohammadi1  | |
| [1] Department of Pharmacology, The University of Sydney, Sydney, NSW, Australia | |
| 关键词: Allodynia; Mechanical hyperalgesia; Chronic pain; Pain; Nicotinic acetylcholine receptor; | |
| Others : 1135565 DOI : 10.1186/1744-8069-10-64 |
|
| received in 2014-05-16, accepted in 2014-09-19, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The current pharmacological treatments for chronic pain are limited. The first analgesic drug approved for clinical use in decades that has a novel molecular target is the synthetic version of a naturally occurring conotoxin. Several conotoxins that target ion channels have progressed to clinical trials for the relief of pain. Vc1.1 and RgIA are analgesic α-conotoxins that target α9-subunit-containing nicotinic acetylcholine receptors (α9-nAChR) as well as GABAB receptor mechanisms. However, the evidence for the involvement of α9-nAChRs in pain is controversial. In the present study, the role of the α9-nAChR in pain was assessed using a battery of behavioural pain tests and pain models in α9-nAChR knockout (KO) mice.
Results
α9-nAChR KO mice showed normal responses to acute noxious thermal and mechanical stimuli, and developed normal chronic cold and mechanical allodynia in inflammatory and nerve injury pain models. However, KO animals developed mechanical hyperalgesia to a lesser extent than their wild type (WT) counterparts in both inflammatory and neuropathic pain models. Chronic neuropathic pain is sustained in WT mice for at least 21 days post injury, while KO mice show significant recovery by 14 days post injury. KO sham mice were also resistant to the repeated-measures effect of the noxious pain test that caused a gradual onset of mild mechanical hyperalgesia in WT sham animals.
Conclusions
The α9-nAChR is not involved in acute pain perception or chronic thermal or mechanical allodynia or thermal hyperalgesia but does contribute to the intensity and duration of chronic mechanical hyperalgesia, suggesting that pain-relieving actions of antagonists that target this site may be restricted to high threshold mechanosensation. The α9-nAChR appears to be a valid target for pharmacological compounds that alleviate long-term mechanical hyperalgesia and may be of use as a prophylactic drug to prevent the development of some symptoms of chronic pain.
【 授权许可】
2014 Mohammadi and Christie; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150310063336626.pdf | 697KB | ||
| Figure 4. | 100KB | Image | |
| Figure 3. | 144KB | Image | |
| Figure 2. | 98KB | Image | |
| Figure 1. | 97KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Unrelieved Pain is a Major Global Healthcare Problem. http://www.efic.org/userfiles/Pain%20Global%20Healthcare%20Problem.pdf webcite
- [2]Elzahaf RA, Tashani OA, Unsworth BA, Johnson MI: The prevalence of chronic pain with an analysis of countries with a Human Development Index less than 0.9: a systematic review without meta-analysis. Curr Med Res Opin 2012, 28:1221-1229.
- [3]van Hecke O, Torrance N, Smith BH: Chronic pain epidemiology and its clinical relevance. Br J Anaesth 2013, 111:13-18.
- [4]Katz WA, Barkin RL: Dilemmas in chronic/persistent pain management. Am J Ther 2008, 15:256-264.
- [5]McIntosh JM, Absalom N, Chebib M, Elgoyhen AB, Vincler M: Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol 2009, 78:693-702.
- [6]Lewis RJ, Dutertre S, Vetter I, Christie MJ: Conus venom peptide pharmacology. Pharmacol Rev 2012, 64:259-298.
- [7]Schmidtko A, Lotsch J, Freynhagen R, Geisslinger G: Ziconotide for treatment of severe chronic pain. Lancet 2010, 375:1569-1577.
- [8]Staats PS, Yearwood T, Charapata SG, Presley RW, Wallace MS, Byas-Smith M, Fisher R, Bryce DA, Mangieri EA, Luther RR, Mayo M, McGuire D, Ellis D: Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS - A randomized controlled trial. JAMA 2004, 291:63-70.
- [9]Penn RD, Paice JA: Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000, 85:291-296.
- [10]Adams DJ, Callaghan B, Berecki G: Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (CaV2.2) calcium channels. Br J Pharmacol 2012, 166:486-500.
- [11]Spande TF, Garraffo HM, Edwards MW, Yeh HJC, Pannell L, Daly JW: Epibatidine - a novel (Chloropyridyl) azabicycloheptane with potent analgesic activity from an ecuadorian poison frog. J Am Chem Soc 1992, 114:3475-3478.
- [12]Gao BX, Hierl M, Clarkin K, Juan T, Nguyen H, van der Valk M, Deng H, Guo WH, Lehto SG, Matson D, McDermott JS, Knop J, Gaida K, Cao L, Waldon D, Albrecht BK, Boezio AA, Copeland KW, Harmange JC, Springer SK, Malmberg AB, McDonough SI: Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptor agonists in animal models of persistent pain. Pain 2010, 149:33-49.
- [13]Jain KK: Modulators of nicotinic acetylcholine receptors as analgesics. Curr Opin Investig Drugs 2004, 5:76-81.
- [14]Takeda D, Nakatsuka T, Papke R, Gu JG: Modulation of inhibitory synaptic activity by a non-alpha 4 beta 2, non-alpha 7 subtype of nicotinic receptors in the substantia gelatinosa of adult rat spinal cord. Pain 2003, 101:13-23.
- [15]Umana IC, Daniele CA, McGehee DS: Neuronal nicotinic receptors as analgesic targets: it’s a winding road. Biochem Pharmacol 2013, 86:1208-1214.
- [16]Livett B, Khalil Z, Gayler K, Down J: Alpha conotoxin peptides with analgesic properties. In Book Alpha Conotoxin Peptides With Analgesic Properties (Editor ed.^eds.). City: WO 02/079236 A1; 2002.
- [17]Sandall DW, Satkunanathan N, Keays DA, Polidano MA, Liping X, Pham V, Down JG, Khalil Z, Livett BG, Gayler KR: A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 2003, 42:6904-6911.
- [18]Satkunanathan N, Livett B, Gayler K, Sandall D, Down J, Khalil Z: Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res 2005, 1059:149-158.
- [19]Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM: Molecular mechanism for analgesia involving specific antagonism of alpha 9 alpha 10 nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 2006, 103:17880-17884.
- [20]Klimis H, Adams DJ, Callaghan B, Nevin S, Alewood PF, Vaughan CW, Mozar CA, Christie MJ: A novel mechanism of inhibition of high-voltage activated calcium channels by alpha-conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain 2011, 152:259-266.
- [21]Clark RJ, Fischer H, Nevin ST, Adams DJ, Craik DJ: The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1. J Biol Chem 2006, 281:23254-23263.
- [22]Holtman JR, Dwoskin LP, Dowell C, Wala EP, Zhang ZF, Crooks PA, McIntosh JM: The novel small molecule alpha 9 alpha 10 nicotinic acetylcholine receptor antagonist ZZ-204G is analgesic. Eur J Pharmacol 2011, 670:500-508.
- [23]Wala EP, Crooks PA, McIntosh JM, Holtman JR: Novel small molecule alpha 9 alpha 10 nicotinic receptor antagonist prevents and reverses chemotherapy-evoked neuropathic pain in rats. Anesth Analg 2012, 115:713-720.
- [24]Nevin ST, Clark RJ, Klimis H, Christie MJ, Craik DJ, Adams DJ: Are alpha 9 alpha 10 nicotinic acetylcholine receptors a pain target for alpha-conotoxins? Mol Pharmacol 2007, 72:1406-1410.
- [25]Callaghan B, Adams DJ: Analgesic alpha-conotoxins Vc1.1 and RgIA inhibit N-type calcium channels in sensory neurons of alpha 9 nicotinic receptor knockout mice. Channels 2010, 4:51-54.
- [26]Cuny H, de Faoite A, Huynh TG, Yasuda T, Berecki G, Adams DJ: Gamma-aminobutyric acid type B (GABA(B)) receptor expression is needed for inhibition of N-type (Ca(v)2.2) calcium channels by analgesic alpha-conotoxins. J Biol Chem 2012, 287:23948-23957.
- [27]Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ: The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed 2010, 49:6545-6548.
- [28]McCracken A: Development of the Conopeptide ACV1 for the Treatment of Neuropathic Pain. http://calzada.com.au/investor-centre/presentations/ webcite
- [29]Mannelli LDC, Cinci L, Micheli L, Zanardelli M, Pacini A, McIntosh MJ, Ghelardini C: α-Conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement. Pain 2014. In press
- [30]Napier IA, Klimis H, Rycroft BK, Jin AH, Alewood PF, Motin L, Adams DJ, Christie MJ: Intrathecal alpha-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain. Neuropharmacology 2012, 62:2202-2207.
- [31]Grishin AA, Cuny H, Hung A, Clark RJ, Brust A, Akondi K, Alewood PF, Craik DJ, Adams DJ: Identifying key amino acid residues that affect alpha-conotoxin AuIB inhibition of alpha 3 beta 4 nicotinic acetylcholine receptors. J Biol Chem 2013, 288:34428-34442.
- [32]Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjork E, Handwerker H: Novel classes of responsive and unresponsive c-nociceptors in human skin. J Neurosci 1995, 15:333-341.
- [33]Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S: Alpha-9-an acetylcholine-receptor with novel pharmacological properties expressed in rat cochlear hair-cells. Cell 1994, 79:705-715.
- [34]Lips KS, Pfeil U, Kummer W: Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience 2002, 115:1-5.
- [35]Haberberger RV, Bernardini N, Kress M, Hartmann P, Lips KS, Kummer W: Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat. Autonomic Neurosci Basic Clin 2004, 113:32-42.
- [36]Peng HS, Ferris RL, Matthews T, Hiel H, Lopez-Albaitero A, Lustig LR: Characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) and alpha (alpha) 10 (CHRNAIO) in lymphocytes. Life Sci 2004, 76:263-280.
- [37]Koval L, Lykhmus O, Zhmak M, Khruschov A, Tsetlin V, Magrini E, Viola A, Chernyavsky A, Qian J, Grando S, Komisarenko S, Skok M: Differential involvement of alpha 4 beta 2, alpha 7 and alpha 9 alpha 10 nicotinic acetylcholine receptors in B lymphocyte activation in vitro. Int J Biochem Cell Biol 2011, 43:516-524.
- [38]Colomer C, Olivos-Ore LA, Vincent A, McIntosh JM, Artalejo AR, Guerineau NC: Functional characterization of alpha 9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity. J Neurosci 2010, 30:6732-6742.
- [39]Blackburn-Munro G, Blackburn-Munro RE: Chronic pain, chronic stress and depression: coincidence or consequence? J Neuroendocrinol 2001, 13:1009-1023.
- [40]Imbe H, Iwai-Liao Y, Senba E: Stress-induced hyperalgesia: animal models and putative mechanisms. Front Biosci 2006, 11:2179-2192.
- [41]Elgoyhen AB, Katz E, Fuchs PA: The nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target? Biochem Pharmacol 2009, 78:712-719.
- [42]Swan EEL, Mescher MJ, Sewell WF, Tao SL, Borenstein JI: Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008, 60:1583-1599.
- [43]Lee C-H, Chang Y-C, Chen C-S, Tu S-H, Wang Y-J, Chen L-C, Chang Y-J, Wei P-L, Chang H-W, Chang C-H, Huang C-H, Wu C-H, Ho Y-S: Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces alpha 9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res Treat 2011, 129:331-345.
- [44]Chikova A, Grando SA: Naturally occurring variants of human A9 nicotinic receptor differentially affect bronchial cell proliferation and transformation. PLoS One 2011, 6:1-6.
- [45]Lang PM, Burgstahler R, Haberberger RV, Sippel W, Grafe P: A conus peptide blocks nicotinic receptors of unmyelinated axons in human nerves. Neuroreport 2005, 16:479-483.
- [46]Townsend A, Livett BG, Bingham JP, Truong HT, Karas JA, O’Donnell P, Williamson NA, Purcell AW, Scanlon D: Mass spectral identification of Vc1.1 and differential distribution of conopeptides in the venom duct of Conus victoriae. Effect of post-translational modifications and disulfide isomerisation on bioactivity. Int J Pept Res Ther 2009, 15:195-203.
- [47]Millar NS, Gotti C: Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 2009, 56:237-246.
- [48]Zhou T, Wang Y, Guo CK, Zhang WJ, Yu H, Zhang K, Kong WJ: Two distinct channels mediated by m2mAChR and alpha 9nAChR Co-exist in type II vestibular hair cells of guinea Pig. Int J Mol Sci 2013, 14:8818-8831.
- [49]Halai R, Clark RJ, Nevin ST, Jensen JE, Adams DJ, Craik DJ: Scanning mutagenesis of alpha-conotoxin Vc1.1 reveals residues crucial for activity at the alpha 9 alpha 10 nicotinic acetylcholine receptor. J Biol Chem 2009, 284:20275-20284.
- [50]Mosconi T, Kruger L: Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: ultrastructural morphometric analysis of axonal alterations. Pain 1996, 64:37-57.
- [51]Benbouzid M, Pallage V, Rajalu M, Waltisperger E, Doridot S, Poisbeau P, Freund-Mercier MJ, Barrot M: Sciatic nerve cuffing in mice: a model of sustained neuropathic pain. Eur J Pain 2008, 12:591-599.
- [52]Choi Y, Yoon YW, Na HS, Kim SH, Chung JM: Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 1994, 59:369-376.
- [53]Kinsey SG, Long JZ, O’Neal ST, Abdullah RA, Poklis JL, Boger DL, Cravatt BF, Lichtman AH: Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J Pharmacol Exp Ther 2009, 330:902-910.
- [54]Clayton NM, Oakley I, Thompson S, Wheeldon A, Sargent B, Bountra C: Validation of the dual channel weight averager as an instrument of the measurement of clinically relevant pain. Br J Pharmacol 1997, 120:P219.
- [55]Inglis JJ, McNamee KE, Chia SL, Essex D, Feldmann M, Williams RO, Hunt SP, Vincent T: Regulation of pain sensitivity in experimental osteoarthritis by the endogenous peripheral opioid system. Arthritis Rheum 2008, 58:3110-3119.
- [56]Randall LO, Selitto JJ: A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 1957, 111:409-419.
PDF