期刊论文详细信息
Molecular Neurodegeneration
Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease
Henrik Zetterberg4  Kevin Mills3  Jonathan Schott2  John Hardy6  Kaj Blennow4  Annika Öhrfelt4  Per Johansson1  Johan Svensson5  Nadia Magdalinou2  Ross Paterson2  Wendy Heywood3  Amanda Heslegrave6 
[1] Department of Endocrinology, Skaraborg Hospital, Skövde S-541 85, Sweden;Dementia Research Centre UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK;UCL Institute of Child Health, Guilford Street, London WC1N 1EH, UK;Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal S-431 80, Sweden;Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden;Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
关键词: TREM2;    Cerebrospinal fluid;    Microglia;    Alzheimer’s disease;   
Others  :  1235471
DOI  :  10.1186/s13024-016-0071-x
 received in 2015-09-30, accepted in 2016-01-06,  发布年份 2016
PDF
【 摘 要 】

Background

The discovery that heterozygous missense mutations in the gene encoding triggering receptor expressed on myeloid cells 2 (TREM2) are risk factors for Alzheimer’s disease (AD), with only the apolipoprotein E (APOE) ε4 gene allele conferring a higher risk, has led to increased interest in immune biology in the brain. TREM2 is expressed on microglia, the resident immune cells of the brain and has been linked to phagocytotic clearance of amyloid β (Aβ) plaques. Soluble TREM2 (sTREM2) has previously been measured in cerebrospinal fluid (CSF) by ELISA but in our hands commercial kits have proved unreliable, suggesting that other methods may be required. We developed a mass spectrometry method using selected reaction monitoring for the presence of a TREM2 peptide, which can be used to quantify levels of sTREM2 in CSF.

Findings

We examined CSF samples from memory clinics in Sweden and the UK. For all samples the following were available: clinical diagnosis, age, sex, and measurements of the CSF AD biomarkers Aβ42, T-tau and P-tau 181 . AD patients (n = 37) all met biomarker (IWG2) criteria for AD. Control individuals (n = 22) were cognitively normal without evidence for AD in CSF. We found significantly higher sTREM2 concentration in AD compared to control CSF. There were significant correlations between CSF sTREM2 and T-tau as well as P-tau 181 . CSF sTREM2 increase in AD was replicated in a second, independent cohort consisting of 24 AD patients and 16 healthy volunteers.

Conclusion

CSF concentrations of sTREM2 are higher in AD than in controls, and correlate with markers of neurodegeneration. CSF sTREM2 may be used to quantify glial activation in AD.

【 授权许可】

   
2016 Heslegrave et al.

【 预 览 】
附件列表
Files Size Format View
20160121041208697.pdf 606KB PDF download
Fig. 1. 86KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R et al.. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002; 71(3):656-662.
  • [2]Kondo T, Takahashi K, Kohara N, Takahashi Y, Hayashi S, Takahashi H et al.. Heterogeneity of presenile dementia with bone cysts (Nasu-Hakola disease): three genetic forms. Neurology. 2002; 59(7):1105-1107.
  • [3]Klunemann HH, Ridha BH, Magy L, Wherrett JR, Hemelsoet DM, Keen RW et al.. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology. 2005; 64(9):1502-1507.
  • [4]Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N et al.. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA neurology. 2013; 70(1):78-84.
  • [5]Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al.. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013; 368(2):117-127.
  • [6]Benitez BA, Cruchaga C. TREM2 and neurodegenerative disease. N Engl J Med. 2013; 369(16):1567-1568.
  • [7]Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW et al.. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013; 8:19. BioMed Central Full Text
  • [8]Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J et al.. Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging. 2014; 35(3):726.
  • [9]Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al.. TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA neurology. 2014; 71(4):449-453.
  • [10]Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J et al.. R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimer’s & dementia : the journal of the Alzheimer's Association. 2014; 10(6):602-608.
  • [11]Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol. 2003; 3(6):445-453.
  • [12]Neumann H, Takahashi K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol. 2007; 184(1-2):92-99.
  • [13]Paradowska-Gorycka A, Jurkowska M. Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Hum Immunol. 2013; 74(6):730-737.
  • [14]Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K et al.. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology. 2014; 13(6):614-629.
  • [15]de Souza LC, Chupin M, Lamari F, Jardel C, Leclercq D, Colliot O et al.. CSF tau markers are correlated with hippocampal volume in Alzheimer’s disease. Neurobiol Aging. 2012; 33(7):1253-1257.
  • [16]Hampel H, Burger K, Pruessner JC, Zinkowski R, DeBernardis J, Kerkman D et al.. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch Neurol. 2005; 62(5):770-773.
  • [17]Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ et al.. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain : a journal of neurology. 2006; 129(Pt 11):3035-3041.
  • [18]Seppala TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H et al.. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology. 2012; 78(20):1568-1575.
  • [19]Strozyk D, Blennow K, White LR, Launer LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology. 2003; 60(4):652-656.
  • [20]Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H et al.. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009; 66(3):382-389.
  • [21]Duits FH, Teunissen CE, Bouwman FH, Visser PJ, Mattsson N, Zetterberg H et al.. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimer's & dementia : the journal of the Alzheimer’s Association. 2014; 10(6):713-723.
  • [22]Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K et al.. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015; 86(11):1240-1247.
  • [23]Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al.. Classification of primary progressive aphasia and its variants. Neurology. 2011; 76(11):1006-1014.
  • [24]Heywood W, Wang D, Madgett TE, Avent ND, Eaton S, Chitty LS et al.. The development of a peptide SRM-based tandem mass spectrometry assay for prenatal screening of Down syndrome. J Proteomics. 2012; 75(11):3248-3257.
  • [25]Manwaring V, Heywood WE, Clayton R, Lachmann RH, Keutzer J, Hindmarsh P et al.. The identification of new biomarkers for identifying and monitoring kidney disease and their translation into a rapid mass spectrometry-based test: evidence of presymptomatic kidney disease in pediatric Fabry and type-I diabetic patients. J Proteome Res. 2013; 12(5):2013-2021.
  • [26]Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al.. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013; 368(2):107-116.
  • [27]Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al.. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med. 2014; 6(243):243ra86.
  • [28]Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu W et al.. A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 2015; 10(4):633-644.
  • [29]Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL et al.. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology. 2015; 14(4):388-405.
  • [30]Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C et al.. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain : a journal of neurology. 2008; 131(Pt 11):3081-3091.
  • [31]Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ et al.. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010; 68(10):903-912.
  • [32]Bonneh-Barkay D, Bissel SJ, Wang G, Fish KN, Nicholl GCB, Darko SW et al.. YKL-40, a Marker of Simian Immunodeficiency Virus Encephalitis, Modulates the Biological Activity of Basic Fibroblast Growth Factor. Am J Pathol. 2008; 173(1):130-143.
  • [33]Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 2009; 29(6):313-326.
  • [34]Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005; 201(4):647-657.
  • [35]Lue LF, Schmitz CT, Serrano G, Sue LI, Beach TG, Walker DG. TREM2 Protein Expression Changes Correlate with Alzheimer’s Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain pathology (Zurich, Switzerland). 2015; 25(4):469-480.
  • [36]Schott JM, Revesz T. Inflammation in Alzheimer’s disease: insights from immunotherapy. Brain : a journal of neurology. 2013; 136(Pt 9):2654-2656.
  • [37]Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010; 6(3):131-144.
  文献评价指标  
  下载次数:13次 浏览次数:15次