| Proteome Science | |
| Plasma protein alterations in the refractory anemia with excess blasts subtype 1 subgroup of myelodysplastic syndrome | |
| Jan E Dyr1  Jaroslav Čermák1  Jiří Suttnar1  Zuzana Reicheltová1  Pavel Májek1  | |
| [1] Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic | |
| 关键词: Refractory anemia; Plasma proteome; RAEB-1; Myelodysplastic syndrome; | |
| Others : 817281 DOI : 10.1186/1477-5956-10-31 |
|
| received in 2012-01-26, accepted in 2012-04-30, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Refractory anemia with excess blasts subtype 1 (RAEB-1) is a subgroup of myelodysplastic syndrome. It represents a heterogeneous group of oncohematological bone marrow diseases, which occur particularly in elderly patients. The aim of this proteomic study was to search for plasma protein alterations in RAEB-1 patients.
Results
A total of 24 plasma samples were depleted of fourteen high-abundant plasma proteins, analyzed with 2D SDS-PAGE, compared, and statistically processed with Progenesis SameSpots software. Proteins were identified by nanoLC-MS/MS. Retinol-binding protein 4 and leucine-rich alpha-2-glycoprotein were relatively quantified using mass spectrometry. 56 significantly differing spots were found; and in 52 spots 50 different proteins were successfully identified. Several plasma proteins that changed either in their level or modification have been described herein. The plasma level of retinol-binding protein 4 was decreased, while leucine-rich alpha-2-glycoprotein was modified in RAEB-1 patients. Changes in the inter-alpha-trypsin inhibitor heavy chain H4, altered protein fragmentation, or fragments modifications were observed.
Conclusions
This study describes proteins, which change quantitatively or qualitatively in the plasma of RAEB-1 patients. It is the first report on qualitative changes in the leucine-rich alpha-2-glycoprotein in the RAEB-1 subgroup of myelodysplastic syndrome. Described changes in the composition or modification of inter-alpha-trypsin inhibitor heavy chain H4 fragments in RAEB-1 are in agreement with those changes observed in previous study of refractory cytopenia with multilineage dysplasia, and thus H4 fragments could be a marker specific for myelodysplastic syndrome.
【 授权许可】
2012 Májek et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140710234814333.pdf | 1132KB | ||
| Figure 3. | 24KB | Image | |
| Figure 2. | 37KB | Image | |
| Figure 1. | 29KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Vardiman JW, Harris NL, Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002, 100:2292-2302.
- [2]Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J: Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 2011, 19:313-319.
- [3]Zhong LY, Liu TH, Li YQ, Geng SX, Lu ZS, Weng JY, Wu SJ, Luo CW, Du X: Serum proteomics in patients with RAEB myelodysplastic syndromes. Nan Fang Yi Ke Da Xue Xue Bao 2009, 29:1799-1801.
- [4]Rodriguez-Emmenegger C, Brynda E, Riedel T, Houska M, Subr V, Alles AB, Hasan E, Gautrot JE, Huck WT: Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. Macromol Rapid Commun 2011, 32:952-957.
- [5]Rodriguez Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB: Interaction of blood plasma with antifouling surfaces. Langmuir 2009, 25:6328-6333.
- [6]Riedel T, Brynda E, Dyr JE, Houska M: Controlled preparation of thin fibrin films immobilized at solid surfaces. J Biomed Mater Res A 2009, 88:437-447.
- [7]Májek P, Reicheltová Z, Suttnar J, Malý M, Oravec M, Pečánková K, Dyr JE: Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1. J Transl Med 2011, 9:84. BioMed Central Full Text
- [8]Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE: Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010, 8:56.
- [9]Riedel T, Suttnar J, Brynda E, Houska M, Medved L, Dyr JE: Fibrinopeptides A and B release in the process of surface fibrin formation. Blood 2011, 117:1700-1706.
- [10]Kay R, Barton C, Ratcliffe L, Matharoo-Ball B, Brown P, Roberts J, Teale P, Creaser C: Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun Mass Spectrom 2008, 22:3255-3260.
- [11]Kay RG, Barton C, Velloso CP, Brown PR, Bartlett C, Blazevich AJ, Godfrey RJ, Goldspink G, Rees R, Ball GR, Cowan DA, Harridge SD, Roberts J, Teale P, Creaser CS: High-throughput ultra-high-performance liquid chromatography/tandem mass spectrometry quantitation of insulin-like growth factor-I and leucine-rich alpha-2-glycoprotein in serum as biomarkers of recombinant human growth hormone administration. Rapid Commun Mass Spectrom 2009, 23:3173-3182.
- [12]Lange V, Picotti P, Domon B, Aebersold R: Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4:222.
- [13]Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M, Tanizawa T, Kamiyama R, Hirokawa K: Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997, 11:2049-2054.
- [14]Peddie CM, Wolf CR, McLellan LI, Collins AR, Bowen DT: Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-alpha concentration. Br J Haematol 1997, 99:625-631.
- [15]Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y, Grogan TM, List AF: Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001, 97:1427-1434.
- [16]Abdullah-Soheimi SS, Lim BK, Hashim OH, Shuib AS: Patients with ovarian carcinoma excrete different altered levels of urine CD59, kininogen-1 and fragments of inter-alpha-trypsin inhibitor heavy chain H4 and albumin. Proteome Sci 2010, 8:58. BioMed Central Full Text
- [17]Chen C, Bowen DT, Giagounidis AA, Schlegelberger B, Haase S, Wright EG: Identification of disease- and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del(5q). Leukemia 2010, 24:1875-1884.
- [18]Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, Fleisher M, Lilja H, Brogi E, Boyd J, Sanchez-Carbayo M, Holland EC, Cordon-Cardo C, Scher HI, Tempst P: Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 2006, 116:271-284.
- [19]Mohamed E, Abdul-Rahman PS, Doustjalali SR, Chen Y, Lim BK, Omar SZ, Bustam AZ, Singh VA, Mohd-Taib NA, Yip CH, Hashim OH: Lectin-based electrophoretic analysis of the expression of the 35 kDa inter-alpha-trypsin inhibitor heavy chain H4 fragment in sera of patients with five different malignancies. Electrophoresis 2008, 29:2645-2650.
- [20]Zhang Z, Bast RC, Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY, Berchuck A, Van Hacker NF, de Bruijn HW, van der Zee AG, Jacobs IJ, Fung ET, Chan DW: Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004, 64:5882-5890.
- [21]Fung ET, Yip TT, Lomas L, Wang Z, Yip C, Meng XY, Lin S, Zhang F, Zhang Z, Chan DW, Weinberger SR: Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 2005, 115:783-789.
- [22]Májek P, Reicheltová Z, Suttnar J, Cermák J, Dyr JE: Plasma proteome changes associated with refractory cytopenia with multilineage dysplasia. Proteome Sci 2011, 9:64. BioMed Central Full Text
- [23]Haupt H, Baudner S: Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum. Hoppe Seylers Z Physiol Chem 1977, 358:639-646.
- [24]Shirai R, Hirano F, Ohkura N, Ikeda K, Inoue S: Up-regulation of the expression of leucine-rich alpha(2)-glycoprotein in hepatocytes by the mediators of acute-phase response. Biochem Biophys Res Commun 2009, 382:776-779.
- [25]O'Donnell LC, Druhan LJ, Avalos BR: Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J Leukoc Biol 2002, 72:478-485.
- [26]Okano T, Kondo T, Kakisaka T, Fujii K, Yamada M, Kato H, Nishimura T, Gemma A, Kudoh S, Hirohashi S: Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis. Proteomics 2006, 6:3938-3948.
- [27]Kakisaka T, Kondo T, Okano T, Fujii K, Honda K, Endo M, Tsuchida A, Aoki T, Itoi T, Moriyasu F, Yamada T, Kato H, Nishimura T, Todo S, Hirohashi S: Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 852:257-267.
- [28]Andersen JD, Boylan KL, Jemmerson R, Geller MA, Misemer B, Harrington KM, Weivoda S, Witthuhn BA, Argenta P, Vogel RI, Skubitz AP: Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res 2010, 3:21. BioMed Central Full Text
- [29]Liu T, Qian WJ, Gritsenko MA, Camp DG, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 2005, 4:2070-2080.
- [30]Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA: Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J Proteome Res 2006, 5:1493-1503.
- [31]Zanotti G, Berni R: Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin. Vitam Horm 2004, 69:271-295.
- [32]Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T: Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin Endocrinol Metab 2007, 92:2712-2719.
- [33]Balagopal P, Graham TE, Kahn BB, Altomare A, Funanage V, George D: Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation. J Clin Endocrinol Metab 2007, 92:1971-1974.
- [34]Koch A, Weiskirchen R, Sanson E, Zimmermann HW, Voigt S, Dückers H, Trautwein C, Tacke F: Circulating retinol binding protein 4 in critically ill patients before specific treatment: prognostic impact and correlation with organ function, metabolism and inflammation. Crit Care 2010, 14:R179. BioMed Central Full Text
PDF