期刊论文详细信息
Vascular Cell
In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective
Dietmar Werner Hutmacher4  Eugen Bogdan Petcu5  Saso Ivanovski5  Kiarash Khosrotehrani3  Elena M De-Juan-Pardo4  Ulrich Bonda1  Mélanie Antille2  Jeremy Baldwin4 
[1] Leibniz Institute of Polymer Research Dresden (IPF) & Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, 01069, Dresden, Germany;Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland;The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia;Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
关键词: Matrices;    Tissue engineering;    Vascularisation;    Co-culture;   
Others  :  1131031
DOI  :  10.1186/2045-824X-6-13
 received in 2014-02-16, accepted in 2014-06-12,  发布年份 2014
PDF
【 摘 要 】

In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications.

【 授权许可】

   
2014 Baldwin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150228191037498.pdf 1156KB PDF download
Figure 5. 79KB Image download
Figure 4. 47KB Image download
Figure 3. 37KB Image download
Figure 2. 28KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Rouwkema J, Rivron NC, van Blitterswijk CA: Vascularization in tissue engineering. Trends Biotechnol 2008, 26:434-441.
  • [2]Ko H, Milthorpe BK, McFarland CD: Engineering thick tissues—the vascularisation problem. Eur Cell Mater 2007, 14:1-18.
  • [3]Kirkpatrick CJ, Fuchs S, Unger RE: Co-culture systems for vascularization—learning from nature. Adv Drug Deliv Rev 2011, 63:291-299.
  • [4]Liu Z-J, Velazquez OC: Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 2008, 10:1869-1882.
  • [5]Sivan-Loukianova E, Awad O, Stepanovic V, Bickenbach J, Schatteman G: CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 2003, 40:368-377.
  • [6]Shantsila E, Watson T, Lip GY: Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 2007, 49:741-752.
  • [7]Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Suzuki T, Oyamada A, Horii M, Yokoyama A: Fracture induced mobilization and incorporation of bone marrow‒derived endothelial progenitor cells for bone healing. J Cell Physiol 2008, 215:234-242.
  • [8]Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, Eblenkamp M, Gomes M, Reis RL, Kirkpatrick CJ: Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 2009, 30:526-534.
  • [9]Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T: Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 2008, 118:S145-S152.
  • [10]Supp DM, Wilson-Landy K, Boyce ST: Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J 2002, 16:797-804.
  • [11]Seebach C, Henrich D, Kähling C, Wilhelm K, Tami AE, Alini M, Marzi I: Endothelial progenitor cells and mesenchymal stem cells seeded onto β-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng 2010, 16:1961-1970.
  • [12]Meyer U, Handschel J, Wiesmann HP: Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer; 2009.
  • [13]Chi J-T, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D: Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 2003, 100:10623-10628.
  • [14]Boyer M, Townsend LE, Vogel LM, Falk J, Reitz-Vick D, Trevor KT, Villalba M, Bendick PJ, Glover JL: Isolation of endothelial cells and their progenitor cells from human peripheral blood. Eur J Vasc Surg 2000, 31:181-189.
  • [15]Jaffe EA, Nachman RL, Becker CG, Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973, 52:2745.
  • [16]Leach L, Bhasin Y, Clark P, Firth J: Isolation of endothelial cells from human term placental villi using immunomagnetic beads. Placenta 1994, 15:355-364.
  • [17]Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC: Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004, 104:2752-2760.
  • [18]Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC: Vessel wall–derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2005, 105:2783-2786.
  • [19]Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A: Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 2004, 103:2577-2584.
  • [20]Khoo CP, Pozzilli P, Alison MR: Endothelial progenitor cells and their potential therapeutic applications. Regen Med 2008, 3:863-876.
  • [21]Finkenzeller G, Torio-Padron N, Momeni A, Mehlhorn AT, Stark GB: In vitro angiogenesis properties of endothelial progenitor cells: a promising tool for vascularization of ex vivo engineered tissues. Tissue Eng 2007, 13:1413-1420.
  • [22]Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007, 109:1801-1809.
  • [23]Ingram DA, Caplice NM, Yoder MC: Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005, 106:1525-1531.
  • [24]Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348:593-600.
  • [25]Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001, 89:e1-e7.
  • [26]Lin Y, Weisdorf DJ, Solovey A, Hebbel RP: Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000, 105:71-77.
  • [27]Hirschi KK, Ingram DA, Yoder MC: Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008, 28:1584-1595.
  • [28]Handgretinger R, Gordon PR, Leimig T, Chen X, Bühring HJ, Niethammer D, Kuci S: Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci 2003, 996:141-151.
  • [29]Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA: Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 2000, 95:952-958.
  • [30]Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA: Human CD34þAC133þVEGFR-2þ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007, 35:1109-1118.
  • [31]Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RC, Brittan M, Hadoke PW, Newby DE, Turner ML, Mills NL: Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 2013, 31:338-348.
  • [32]Sieveking DP, Buckle A, Celermajer DS, Ng MK: Strikingly Different Angiogenic Properties of Endothelial Progenitor Cell SubpopulationsInsights From a Novel Human Angiogenesis Assay. J Am Coll Cardiol 2008, 51:660-668.
  • [33]Khan SS, Solomon MA, McCoy JP: Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 2005, 64:1-8.
  • [34]Fau PJ, Seppanen E, Fau SE, Chong MSK, Chong Ms F, Yeo JSL, Yeo Js F, Teo EYL, Teo Ey F, Chan JKY, Chan Jk F, Fisk NM, Fisk Nm F, Khosrotehrani K, Khosrotehrani K: Prospective surface marker-based isolation and expansion of fetal endothelial colony-forming cells from human term placenta. Stem Cells Trans Med 2013, 2:839-847.
  • [35]Hofmeister C, Zhang J, Knight K, Le P, Stiff P: Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007, 39:11-23.
  • [36]Corselli M, Parodi A, Mogni M, Sessarego N, Kunkl A, Dagna-Bricarelli F, Ibatici A, Pozzi S, Bacigalupo A, Frassoni F: Clinical scale ex vivo expansion of cord blood–derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Exp Hematol 2008, 36:340-349.
  • [37]Wagers AJ, Weissman IL: Plasticity of adult stem cells. Cell 2004, 116:639-648.
  • [38]Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C: Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004, 22:377-384.
  • [39]Portalska KJ, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C, de Boer J: Endothelial differentiation of mesenchymal stromal cells. PLoS One 2012, 7:e46842.
  • [40]Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC: Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005, 332:370-379.
  • [41]Zhang Y, McNeill E, Tian H, Soker S, Andersson K-E, Yoo JJ, Atala A: Urine derived cells are a potential source for urological tissue reconstruction. J Urol 2008, 180:2226-2233.
  • [42]Liu G, Deng C, Zhang Y: Urine-Derived Stem Cells: Biological Characterization and Potential Clinical Applications. In Stem Cells: Current Challenges and New Directions. New York: Springer; 2013:19-28.
  • [43]Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, Fan Y, Lu X, Zhou X, Liu H: Multipotential differentiation of human urine‒derived stem cells: Potential for therapeutic applications in urology. Stem Cells 2013, 31:1840-1856.
  • [44]Lanza R, Langer R, Vacanti JP: Principles of Tissue Engineering. Burlington: Elsevier Science; 2013.
  • [45]Mitalipov S, Wolf D: Totipotency, pluripotency and nuclear reprogramming. In Engineering of stem cells. Berlin: Springer; 2009:185-199.
  • [46]Kane NM, Meloni M, Spencer HL, Craig MA, Strehl R, Milligan G, Houslay MD, Mountford JC, Emanueli C, Baker AH: Derivation of endothelial cells from human embryonic stem cells by directed differentiation analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 2010, 30:1389-1397.
  • [47]Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R: Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 2002, 99:4391-4396.
  • [48]Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, Suzuki Y, Chao T-H, Sawada N, Fukunaga Y: Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler Thromb Vasc Biol 2007, 27:2127-2134.
  • [49]Holland S, Lebacqz K, Zoloth L: The human embryonic stem cell debate: science, ethics and public policy. Massachusetts: The MIT Press; 2001.
  • [50]McCloskey KE, Smith DA, Jo H, Nerem RM: Embryonic stem cell-derived endothelial cells may lack complete functional maturation in vitro. J Vasc Res 2006, 43:411-421.
  • [51]Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn N: Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2009, 2:198-210.
  • [52]Yildirim S: Induced Pluripotent Stem Cells. Dordrecht: Springer; 2012.
  • [53]Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T: STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 1999, 18:4261-4269.
  • [54]Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003, 113:631-642.
  • [55]Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003, 17:126-140.
  • [56]Niwa H, Miyazaki J-i, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000, 24:372-376.
  • [57]Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S: LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 2005, 132:885-896.
  • [58]Jiang J, Chan Y-S, Loh Y-H, Cai J, Tong G-Q, Lim C-A, Robson P, Zhong S, Ng H-H: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 2008, 10:353-360.
  • [59]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
  • [60]Stadtfeld M, Hochedlinger K: Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010, 24:2239-2263.
  • [61]Choi KD, Yu J, Smuga‒Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I: Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009, 27:559-567.
  • [62]Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS, Batista A, Buecker C, Schäfer R, Han X, Au P: Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci 2013, 110:12774-12779.
  • [63]Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee M, Ji H, Ehrlich L: Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467:285-290.
  • [64]S-i N, Goldstein RA, Nierras CR: The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 2008, 9:725-729.
  • [65]Evensen L, Micklem DR, Blois A, Berge SV, Aarsæther N, Littlewood-Evans A, Wood J, Lorens JB: Mural cell associated VEGF is required for organotypic vessel formation. PLoS One 2009, 4:e5798.
  • [66]Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM: The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 2008, 29:4217-4226.
  • [67]Saito M, Hamasaki M, Shibuya M: Induction of tube formation by angiopoietin‒1 in endothelial cell/fibroblast co‒culture is dependent on endogenous VEGF. Cancer Sci 2003, 94:782-790.
  • [68]Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ: Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 2007, 28:3965-3976.
  • [69]Santos MI, Unger RE, Sousa RA, Reis RL, Kirkpatrick CJ: Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone–starch scaffold and the in vitro development of vascularization. Biomaterials 2009, 30:4407-4415.
  • [70]Pepper MS, Montesano R, Vassalli JD, Orci L: Chondrocytes inhibit endothelial sprout formation in vitro: Evidence for involvement of a transforming growth factor‒beta. J Cell Physiol 1991, 146:170-179.
  • [71]Tada K, Fukunaga T, Wakabayashi Y, Masumi S, Sato Y, Izumi H, Kohno K, Kumano M: Inhibition of tubular morphogenesis in human microvascular endothelial cells by co-culture with chondrocytes and involvement of transforming growth factor β: a model for avascularity in human cartilage. Biochimica et Biophysica Acta (BBA)-General Subjects 1994, 1201:135-142.
  • [72]Ma DH-K, Tsai RJ-F, Chu W-K, Kao C-H, Chen J-K: Inhibition of vascular endothelial cell morphogenesis in cultures by limbal epithelial cells. Invest Ophthalmol Vis Sci 1999, 40:1822-1828.
  • [73]Sherwood L, Learning C: Human Physiology: From Cells to Systems. California: Brooks/Cole, Cengage Learning; 2011.
  • [74]Jain RK: Molecular regulation of vessel maturation. Nat Med 2003, 9:685-693.
  • [75]Davis GE, Bayless KJ, Mavila A: Molecular basis of endothelial cell morphogenesis in three‒dimensional extracellular matrices. Anat Rec 2002, 268:252-275.
  • [76]Place ES, Evans ND, Stevens MM: Complexity in biomaterials for tissue engineering. Nat Mater 2009, 8:457-470.
  • [77]Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE: Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 2006, 175:179-191.
  • [78]Stratman AN, Davis GE: Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 2012, 18:68-80.
  • [79]Goerke SM, Plaha J, Hager S, Strassburg S, Torio-Padron N, Stark GB, Finkenzeller G: Human Endothelial Progenitor Cells Induce Extracellular Signal-Regulated Kinase-Dependent Differentiation of Mesenchymal Stem Cells into Smooth Muscle Cells upon Cocultivation. Tissue Eng 2012, 18:2395-2405.
  • [80]Au P, Tam J, Fukumura D, Jain RK: Bone marrow–derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008, 111:4551-4558.
  • [81]Krishnan L, Underwood CJ, Maas S, Ellis BJ, Kode TC, Hoying JB, Weiss JA: Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res 2008, 78:324-332.
  • [82]Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE: Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP–dependent proteolysis in 3-dimensional collagen matrices. Blood 2009, 114:237-247.
  • [83]Grainger SJ, Putnam AJ: Assessing the permeability of engineered capillary networks in a 3D culture. PLoS One 2011, 6:e22086.
  • [84]Sanz L, Santos-Valle P, Alonso-Camino V, Salas C, Serrano A, Vicario JL, Cuesta ÁM, Compte M, Sánchez-Martín D, Álvarez-Vallina L: Long-term in vivo imaging of human angiogenesis: Critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 2008, 75:308-314.
  • [85]Holthöfer H, Virtanen I, Kariniemi A, Hormia M, Linder E, Miettinen A: Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 1982, 47:60-66.
  • [86]Vasquez SX, Gao F, Su F, Grijalva V, Pope J, Martin B, Stinstra J, Masner M, Shah N, Weinstein DM: Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS One 2011, 6:e19099.
  • [87]Grabherr S, Hess A, Karolczak M, Thali MJ, Friess SD, Kalender WA, Dirnhofer R, Djonov V: Angiofil®‒mediated visualization of the vascular system by microcomputed tomography: A feasibility study. Microsc Res Tech 2008, 71:551-556.
  • [88]Hoffman RM, Yang M: Subcellular imaging in the live mouse. Nat Protoc 2006, 1:775-782.
  • [89]Contag CH, Bachmann MH: Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002, 4:235-260.
  • [90]Davis GE, Stratman AN, Sacharidou A, Koh W: Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 2011, 288:101.
  • [91]Lutolf M, Hubbell J: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005, 23:47-55.
  • [92]Sieminski A, Hebbel RP, Gooch KJ: The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 2004, 297:574-584.
  • [93]Stevenson M, Piristine H, Hogrebe N, Nocera T, Boehm M, Reen R, Koelling K, Agarwal G, Sarang-Sieminski A, Gooch K: A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions. Acta Biomater 2013, 9:7651-7661.
  • [94]Yamamura N, Sudo R, Ikeda M, Tanishita K: Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 2007, 13:1443-1453.
  • [95]Hanjaya‒Putra D, Yee J, Ceci D, Truitt R, Yee D, Gerecht S: Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J Cell Mol Med 2010, 14:2436-2447.
  • [96]Pandit V, Zuidema J, Venuto KN, Macione J, Dai G, Gilbert RJ, Kotha S: Evaluation of Multifunctional Polysaccharide Hydrogels with Varying Stiffness for Bone Tissue Engineering. Tissue Eng 2013, 19:2452.
  • [97]Chatterjee K, Lin-Gibson S, Wallace WE, Parekh SH, Lee YJ, Cicerone MT, Young MF, Simon CG Jr: The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 2010, 31:5051-5062.
  • [98]Montaño I, Schiestl C, Schneider J, Pontiggia L, Luginbühl J, Biedermann T, Böttcher-Haberzeth S, Braziulis E, Meuli M, Reichmann E: Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng Part A 2009, 16:269-282.
  • [99]Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A: Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31:5536-5544.
  • [100]Borenstein JT, Terai H, King KR, Weinberg E, Kaazempur-Mofrad M, Vacanti J: Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 2002, 4:167-175.
  • [101]Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012, 11:768-774.
  • [102]Crapo PM, Gilbert TW, Badylak SF: An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32:3233-3243.
  • [103]Wong ML, Griffiths LG: Immunogenicity in xenogeneic scaffold generation: Antigen removal versus decellularization. Acta Biomater 2014, 10:1806-1816.
  • [104]Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T: Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 2005, 26:6415-6422.
  • [105]Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y: Thermo‒responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol Chem Rapid Comm 1990, 11:571-576.
  • [106]Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T: Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 2001, 7:473-480.
  • [107]Shimizu T, Yamato M, Kikuchi A, Okano T: Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 2003, 24:2309-2316.
  • [108]Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F, Okano T: Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 2010, 31:3903-3909.
  • [109]Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M: Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 2012, 7:850-858.
  • [110]Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, Motta A, Migliaresi C, Kirkpatrick CJ: The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 2010, 31:6959-6967.
  • [111]Xing Z, Xue Y, Finne‒Wistrand A, Yang ZQ, Mustafa K: Copolymer cell/scaffold constructs for bone tissue engineering: Co‒culture of low ratios of human endothelial and osteoblast‒like cells in a dynamic culture system. J Biomed Mater Res 2013, 101:1113-1120.
  • [112]Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW: The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ε-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 2011, 32:8108-8117.
  • [113]Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero‒Martin JM, Khademhosseini A: Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 2012, 22:2027-2039.
  • [114]Buschmann J, Welti M, Hemmi S, Neuenschwander P, Baltes C, Giovanoli P, Rudin M, Calcagni M: Three-dimensional co-cultures of osteoblasts and endothelial cells in DegraPol foam: histological and high-field magnetic resonance imaging analyses of pre-engineered capillary networks in bone grafts. Tissue Eng 2010, 17:291-299.
  • [115]Quent V, Loessner D, Friis T, Reichert JC, Hutmacher DW: Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J Cell Mol Med 2010, 14:1003-1013.
  • [116]Zhang Y, Schedle A, Matejka M, Rausch-Fan X, Andrukhov O: The proliferation and differentiation of osteoblasts in co-culture with human umbilical vein endothelial cells: an improved analysis using fluorescence-activated cell sorting. Cell Mol Biol Lett 2010, 15:517-529.
  • [117]Maciag T, Cerundolo J, Ilsley S, Kelley P, Forand R: An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc Natl Acad Sci 1979, 76:5674-5678.
  • [118]Terramani TT, Eton D, Bui PA, Wang Y, Weaver FA, Yu H: Human macrovascular endothelial cells: optimization of culture conditions. In Vitro Cell Dev Biol-Anim 2000, 36:125-132.
  • [119]Bartoli M, PLATT D, Lemtalsi T, Gu X, Brooks SE, Marrero MB, Caldwell RB: VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J 2003, 17:1562-1564.
  • [120]Craig LE, Spelman JP, Strandberg JD, Zink MC: Endothelial cells from diverse tissues exhibit differences in growth and morphology. Microvasc Res 1998, 55:65-76.
  • [121]Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E, Vannier J-P, Soria J, Vasse M, Soria C: SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 2000, 99:587-594.
  • [122]Lang I, Pabst MA, Hiden U, Blaschitz A, Dohr G, Hahn T, Desoye G: Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur J Cell Biol 2003, 82:163-173.
  • [123]Mannello F, Tonti GA: Concise Review: No Breakthroughs for Human Mesenchymal and Embryonic Stem Cell Culture: Conditioned Medium, Feeder Layer, or Feeder‒Free; Medium with Fetal Calf Serum, Human Serum, or Enriched Plasma; Serum‒Free, Serum Replacement Nonconditioned Medium, or Ad Hoc Formula? All That Glitters Is Not Gold! Stem Cells 2007, 25:1603-1609.
  • [124]Gstraunthaler G: Alternatives to the use of fetal bovine serum: serum-free cell culture. Altex 2003, 20:275-281.
  • [125]Kuznetsov SA, Mankani MH, Robey PG: Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 2000, 70:1780-1787.
  • [126]Zeisberger SM, Zoller S, Riegel M, Chen S, Krenning G, Harmsen MC, Sachinidis A, Zisch AH: Optimization of the culturing conditions of human umbilical cord blood‒derived endothelial colony‒forming cells under xeno‒free conditions applying a transcriptomic approach. Genes Cells 2010, 15:671-687.
  • [127]Huang L, Critser PJ, Grimes BR, Yoder MC: Human umbilical cord blood plasma can replace fetal bovine serum for in vitro expansion of functional human endothelial colony-forming cells. Cytotherapy 2011, 13:712-721.
  • [128]Harvey K, Siddiqui RA, Sliva D, Garcia JG, English D: Serum factors involved in human microvascular endothelial cell morphogenesis. J Lab Clin Med 2002, 140:188-198.
  • [129]Reinisch A, Hofmann NA, Obenauf AC, Kashofer K, Rohde E, Schallmoser K, Flicker K, Lanzer G, Linkesch W, Speicher MR: Humanized large-scale expanded endothelial colony–forming cells function in vitro and in vivo. Blood 2009, 113:6716-6725.
  • [130]Denecke B, Horsch LD, Radtke S, Fischer JC, Horn PA, Giebel B: Human endothelial colony‒forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold‒based tissue engineering. J Tissue Eng Regen Med 2013.
  • [131]Iyer RK, Chiu LL, Radisic M: Microfabricated poly (ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering. J Biomed Mater Res 2009, 89:616-631.
  • [132]Iyer RK, Chiu LL, Vunjak-Novakovic G, Radisic M: Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering. Biofabrication 2012, 4:035002.
  • [133]Lovett M, Lee K, Edwards A, Kaplan DL: Vascularization strategies for tissue engineering. Tissue Eng 2009, 15:353-370.
  • [134]Tufro-McReddie A, Norwood V, Aylor K, Botkin S, Carey R, Gomez R: Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis. Dev Biol 1997, 183:139-149.
  • [135]Rey S, Semenza GL: Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 2010, 86:236-242.
  • [136]Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359:843-845.
  • [137]Liu K, Chi L, Guo L, Liu X, Luo C, Zhang S, He G: The interactions between brain microvascular endothelial cells and mesenchymal stem cells under hypoxic conditions. Microvasc Res 2008, 75:59-67.
  • [138]Kanichai M, Ferguson D, Prendergast PJ, Campbell VA: Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia‒inducible factor (HIF)‒1α. J Cell Physiol 2008, 216:708-715.
  • [139]Xu N, Liu H, Qu F, Fan J, Mao K, Yin Y, Liu J, Geng Z, Wang Y: Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol 2012, 9:33-39.
  • [140]Xing Z, Xue Y, Dånmark S, Schander K, Østvold S, Arvidson K, Hellem S, Finne‒Wistrand A, Albertsson AC, Mustafa K: Effect of endothelial cells on bone regeneration using poly (L‒lactide‒co‒1, 5‒dioxepan‒2‒one) scaffolds. J Biomed Mater Res 2011, 96:349-357.
  • [141]Liu Y, Teoh S-H, Chong MS, Yeow C-H, Kamm RD, Choolani M, Chan JK: Contrasting Effects of Vasculogenic Induction Upon Biaxial Bioreactor Stimulation of Mesenchymal Stem Cells and Endothelial Progenitor Cells Cocultures in Three-Dimensional Scaffolds Under In Vitro and In Vivo Paradigms for Vascularized Bone Tissue Engineering. Tissue Eng 2012, 19:893-904.
  • [142]Campbell GR, Campbell JH: Development of tissue engineered vascular grafts. Curr Pharm Biotechnol 2007, 8:43-50.
  • [143]Ferrara N, Gerber HP: Vascular endothelial growth factor molecular and biological aspects. Advances Organ Biol 1999, 7:25-57.
  • [144]Sorrell JM, Baber MA, Caplan AI: Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 2009, 15:1751-1761.
  • [145]Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I: Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 2014, 143:181-196.
  • [146]Chintalgattu V, Nair DM, Katwa LC: Cardiac myofibroblasts: a novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol 2003, 35:277-286.
  • [147]Carmeliet P, Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473:298-307.
  • [148]Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996, 87:1171-1180.
  • [149]Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W: Angiopoietin-1 induces sprouting angiogenesis in vitro. Current Biol 1998, 8:529-532.
  • [150]Salcedo R, Oppenheim JJ: Role of chemokines in angiogenesis: CXCL12/SDF‒1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 2003, 10:359-370.
  • [151]Sato N, Beitz J, Kato J, Yamamoto M, Clark J, Calabresi P, Raymond A, Frackelton A Jr: Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 1993, 142:1119.
  • [152]Hellberg C, Ostman A, Heldin C-H: PDGF and vessel maturation. In Angiogenesis inhibition. Berlin: Springer; 2010:103-114.
  • [153]Gaengel K, Genové G, Armulik A, Betsholtz C: Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009, 29:630-638.
  文献评价指标  
  下载次数:112次 浏览次数:50次