Retrovirology | |
HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells | |
Olivier Schwartz3  Diane Descamps4  Benoit Visseaux4  Daniela Bruni5  Françoise Porrot2  Ferdinand Roesch1  Diana Ayinde2  Isabel Puigdomenech2  Lise Chauveau1  | |
[1] Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France;Institut Pasteur, URA CNRS 3015, Virus & Immunity Unit, Paris, France;Vaccine Research Institute, Hôpital Henri Mondor, Créteil, France;AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France;Institut Pasteur, Hepacivirus & Innate Immunity Unit, Paris, France | |
关键词: Interferon; CD4+ lymphocytes; Monocyte-derived dendritic cells; SAMHD1; Vpx; HIV-2; | |
Others : 1132001 DOI : 10.1186/s12977-014-0131-7 |
|
received in 2014-11-18, accepted in 2014-12-17, 发布年份 2015 | |
【 摘 要 】
Background
Human Immunodeficiency Virus-type 2 (HIV-2) encodes Vpx that degrades SAMHD1, a cellular restriction factor active in non-dividing cells. HIV-2 replicates in lymphocytes but the susceptibility of monocyte-derived dendritic cells (MDDCs) to in vitro infection remains partly characterized.
Results
Here, we investigated HIV-2 replication in primary CD4+ T lymphocytes, both activated and non-activated, as well as in MDDCs. We focused on the requirement of Vpx for productive HIV-2 infection, using the reference HIV-2 ROD strain, the proviral clone GL-AN, as well as two primary HIV-2 isolates. All HIV-2 strains tested replicated in activated CD4+ T cells. Unstimulated CD4+ T cells were not productively infected by HIV-2, but viral replication was triggered upon lymphocyte activation in a Vpx-dependent manner. In contrast, MDDCs were poorly infected when exposed to HIV-2. HIV-2 particles did not potently fuse with MDDCs and did not lead to efficient viral DNA synthesis, even in the presence of Vpx. Moreover, the HIV-2 strains tested were not efficiently sensed by MDDCs, as evidenced by a lack of MxA induction upon viral exposure. Virion pseudotyping with VSV-G rescued fusion, productive infection and HIV-2 sensing by MDDCs.
Conclusion
Vpx allows the non-productive infection of resting CD4+ T cells, but does not confer HIV-2 with the ability to efficiently infect MDDCs. In these cells, an entry defect prevents viral fusion and reverse transcription independently of SAMHD1. We propose that HIV-2, like HIV-1, does not productively infect MDDCs, possibly to avoid triggering an immune response mediated by these cells.
【 授权许可】
2015 Chauveau et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150303140904320.pdf | 2717KB | download | |
Figure 5. | 48KB | Image | download |
Figure 4. | 69KB | Image | download |
Figure 3. | 82KB | Image | download |
Figure 2. | 89KB | Image | download |
Figure 1. | 113KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC: Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol 2013, 23(4):221-40.
- [2]Menendez-Arias L, Alvarez M: Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antivir Res 2014, 102:70-86.
- [3]van der Loeff MF, Larke N, Kaye S, Berry N, Ariyoshi K, Alabi A, van Tienen C, Leligdowicz A, Sarge-Njie R, da Silva Z, et al.: Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village. Retrovirology 2010, 7:46. BioMed Central Full Text
- [4]Esbjornsson J, Mansson F, Kvist A, Isberg PE, Nowroozalizadeh S, Biague AJ, da Silva ZJ, Jansson M, Fenyo EM, Norrgren H, et al.: Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. N Engl J Med 2012, 367(3):224-32.
- [5]Thiebaut R, Matheron S, Taieb A, Brun-Vezinet F, Chene G: Autran B, immunology group of the ACOHIVc: Long-term nonprogressors and elite controllers in the ANRS CO5 HIV-2 cohort. Aids 2011, 25(6):865-7.
- [6]MacNeil A, Sarr AD, Sankale JL, Meloni ST, Mboup S, Kanki P: Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. J Virol 2007, 81(10):5325-30.
- [7]Popper SJ, Sarr AD, Travers KU, Gueye-Ndiaye A, Mboup S, Essex ME, Kanki PJ: Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis 1999, 180(4):1116-21.
- [8]Gottlieb GS, Hawes SE, Kiviat NB, Sow PS: Differences in proviral DNA load between HIV-1-infected and HIV-2-infected patients. AIDS 2008, 22(11):1379-80.
- [9]Gueudin M, Damond F, Braun J, Taieb A, Lemee V, Plantier JC, Chene G, Matheron S, Brun-Vezinet F, Simon F: Differences in proviral DNA load between HIV-1- and HIV-2-infected patients. AIDS 2008, 22(2):211-5.
- [10]Michel P, Balde AT, Roussilhon C, Aribot G, Sarthou JL, Gougeon ML: Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with beta2 microglobulin concentration and disease evolution. J Infect Dis 2000, 181(1):64-75.
- [11]Thiebaut R, Charpentier C, Damond F, Taieb A, Antoine R, Capeau J, Chene G, Collin G, Matheron S, Descamps D, et al.: Association of soluble CD14 and inflammatory biomarkers with HIV-2 disease progression. Clin Infect Dis 2012, 55(10):1417-25.
- [12]Leligdowicz A, Feldmann J, Jaye A, Cotten M, Dong T, McMichael A, Whittle H, Rowland-Jones S: Direct relationship between virus load and systemic immune activation in HIV-2 infection. J Infect Dis 2010, 201(1):114-22.
- [13]Cavaleiro R, Tendeiro R, Foxall RB, Soares RS, Baptista AP, Gomes P, Valadas E, Victorino RM, Sousa AE: Monocyte and myeloid dendritic cell activation occurs throughout HIV type 2 infection, an attenuated form of HIV disease. J Infect Dis 2013, 207(11):1730-42.
- [14]Kanki PJ, Rowland-Jones S: The protective effect of HIV-2 infection: implications for understanding HIV-1 immunity. AIDS (London, England) 2014, 28(7):1065-7.
- [15]Esbjornsson J, Mansson F, Kvist A, Isberg PE, Nowroozalizadeh S, Biague AJ, da Silva ZJ, Jansson M, Fenyo EM, Norrgren H, et al.: Effect of HIV-2 infection on HIV-1 disease progression and mortality. AIDS 2014, 28(4):614-5.
- [16]Rodriguez SK, Sarr AD, MacNeil A, Thakore-Meloni S, Gueye-Ndiaye A, Traore I, Dia MC, Mboup S, Kanki PJ: Comparison of heterologous neutralizing antibody responses of human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected Senegalese patients: distinct patterns of breadth and magnitude distinguish HIV-1 and HIV-2 infections. J Virol 2007, 81(10):5331-8.
- [17]Shi Y, Brandin E, Vincic E, Jansson M, Blaxhult A, Gyllensten K, Moberg L, Brostrom C, Fenyo EM, Albert J: Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J Gen Virol 2005, 86(Pt 12):3385-96.
- [18]Kong R, Li H, Georgiev I, Changela A, Bibollet-Ruche F, Decker JM, Rowland-Jones SL, Jaye A, Guan Y, Lewis GK, et al.: Epitope mapping of broadly neutralizing HIV-2 human monoclonal antibodies. J Virol 2012, 86(22):12115-28.
- [19]Kong R, Li H, Bibollet-Ruche F, Decker JM, Zheng NN, Gottlieb GS, Kiviat NB, Sow PS, Georgiev I, Hahn BH, et al.: Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection. J Virol 2012, 86(2):947-60.
- [20]Whittle HC, Ariyoshi K, Rowland-Jones S: HIV-2 and T cell recognition. Curr Opin Immunol 1998, 10(4):382-7.
- [21]Duvall MG, Jaye A, Dong T, Brenchley JM, Alabi AS, Jeffries DJ, van der Sande M, Togun TO, McConkey SJ, Douek DC, et al.: Maintenance of HIV-specific CD4+ T cell help distinguishes HIV-2 from HIV-1 infection. J Immunol 2006, 176(11):6973-81.
- [22]Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA: Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008, 38(2):350-63.
- [23]Cordeil S, Nguyen XN, Berger G, Durand S, Ainouze M, Cimarelli A: Evidence for a different susceptibility of primate lentiviruses to type I interferons. J Virol 2013, 87(5):2587-96.
- [24]Ylinen LM, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ: Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol 2005, 79(18):11580-7.
- [25]Onyango CO, Leligdowicz A, Yokoyama M, Sato H, Song H, Nakayama EE, Shioda T, de Silva T, Townend J, Jaye A, et al.: HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. Vaccine 2010, 28(Suppl 2):B60-7.
- [26]Harrison IP, McKnight A: Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2. Virology 2011, 415(1):47-55.
- [27]Marchant D, Neil SJ, Aubin K, Schmitz C, McKnight A: An envelope-determined, pH-independent endocytic route of viral entry determines the susceptibility of human immunodeficiency virus type 1 (HIV-1) and HIV-2 to Lv2 restriction. J Virol 2005, 79(15):9410-8.
- [28]Neil SJ: The antiviral activities of tetherin. Curr Top Microbiol Immunol 2013, 371:67-104.
- [29]Hotter D, Sauter D, Kirchhoff F: Emerging role of the host restriction factor tetherin in viral immune sensing. J Mol Biol 2013, 425(24):4956-64.
- [30]Marno KM, Ogunkolade BW, Pade C, Oliveira NM, O'Sullivan E, McKnight A: Novel restriction factor RNA-associated early-stage anti-viral factor (REAF) inhibits human and simian immunodeficiency viruses. Retrovirology 2014, 11:3. BioMed Central Full Text
- [31]Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M: SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 2012, 9:87. BioMed Central Full Text
- [32]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474(7353):654-7.
- [33]Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, et al.: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012, 13(3):223-8.
- [34]Ayinde D, Casartelli N, Schwartz O: Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat Rev Microbiol 2012, 10(10):675-80.
- [35]Puigdomenech I, Casartelli N, Porrot F, Schwartz O: SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells. J Virol 2013, 87(5):2846-56.
- [36]Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, et al.: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012, 18(11):1682-7.
- [37]Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nunez A, et al.: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 2014, 20(8):936-41.
- [38]Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M: Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell reports 2013, 3(4):1036-43.
- [39]White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F: The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2013, 13(4):441-51.
- [40]Welbourn S, Dutta SM, Semmes OJ, Strebel K: Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 2013, 87(21):11516-24.
- [41]Yu H, Usmani SM, Borch A, Kramer J, Sturzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, et al.: The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 2013, 10:27. BioMed Central Full Text
- [42]Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, El Marjou A, Lacabaratz C, Lelievre JD, Manel N: The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 2013, 39(6):1132-42.
- [43]Schaller T, Goujon C, Malim MH: AIDS/HIV. HIV interplay with SAMHD1. Science 2012, 335(6074):1313-4.
- [44]Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR: A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010, 467(7312):214-7.
- [45]Manel N, Littman DR: Hiding in plain sight: how HIV evades innate immune responses. Cell 2011, 147(2):271-4.
- [46]Cheng X, Ratner L: HIV-2 Vpx protein interacts with interferon regulatory factor 5 (IRF5) and inhibits its function. J Biol Chem 2014, 289(13):9146-57.
- [47]Marchant D, Neil SJ, McKnight A: Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture. J Gen Virol 2006, 87(Pt 2):411-8.
- [48]Royle CM, Graham DR, Sharma S, Fuchs D, Boasso A: HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. J Immunol 2014, 193(7):3538-48.
- [49]Guyader M, Emerman M, Montagnier L, Peden K: VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. EMBO J 1989, 8(4):1169-75.
- [50]Kawamura M, Sakai H, Adachi A: Human immunodeficiency virus Vpx is required for the early phase of replication in peripheral blood mononuclear cells. Microbiol Immunol 1994, 38(11):871-8.
- [51]Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M, Collin G, Descamps D, Damond F, Brun-Vezinet F, Nisole S, et al.: The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol 2009, 83(10):4854-60.
- [52]Duvall MG, Lore K, Blaak H, Ambrozak DA, Adams WC, Santos K, Geldmacher C, Mascola JR, McMichael AJ, Jaye A, et al.: Dendritic cells are less susceptible to human immunodeficiency virus type 2 (HIV-2) infection than to HIV-1 infection. J Virol 2007, 81(24):13486-98.
- [53]Haller O, Kochs G: Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2011, 31(1):79-87.
- [54]Cavrois M, De Noronha C, Greene WC: A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 2002, 20(11):1151-4.
- [55]Reuter S, Kaumanns P, Buschhorn SB, Dittmar MT: Role of HIV-2 envelope in Lv2-mediated restriction. Virology 2005, 332(1):347-58.
- [56]Gueudin M, Braun J, Plantier JC, Simon F: HIV-1 and HIV-2 produce different amounts of 2-long terminal repeat circular DNA in vitro. AIDS 2008, 22(18):2543-5.
- [57]Miller MD, Warmerdam MT, Gaston I, Greene WC, Feinberg MB: The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J Exp Med 1994, 179(1):101-13.
- [58]Spina CA, Kwoh TJ, Chowers MY, Guatelli JC, Richman DD: The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J Exp Med 1994, 179(1):115-23.
- [59]Amie SM, Daly MB, Noble E, Schinazi RF, Bambara RA, Kim B: Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. J Biol Chem 2013, 288(28):20683-91.
- [60]Wu L. Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1. ISRN biochemistry 2013 Jul 7. pii: 728392
- [61]Boyer PL, Clark PK, Hughes SH: HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol 2012, 86(10):5885-94.
- [62]Neil SJ, Aasa-Chapman MM, Clapham PR, Nibbs RJ, McKnight A, Weiss RA: The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 2005, 79(15):9618-24.
- [63]Segura E, Amigorena S: Cross-presentation by human dendritic cell subsets. Immunol Lett 2013, 158(1–2):73-8.
- [64]Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013, 341(6148):903-6.
- [65]Calantone N, Wu F, Klase Z, Deleage C, Perkins M, Matsuda K, Thompson EA, Ortiz AM, Vinton CL, Ourmanov I, et al.: Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 2014, 41(3):493-502.
- [66]Roquebert B, Damond F, Collin G, Matheron S, Peytavin G, Benard A, Campa P, Chene G, Brun-Vezinet F, Descamps D, et al.: HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J Antimicrob Chemother 2008, 62(5):914-20.
- [67]Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C, et al.: Isolation of a new human retrovirus from West African patients with AIDS. Science 1986, 233(4761):343-6.
- [68]Visseaux B, Hurtado-Nedelec M, Charpentier C, Collin G, Storto A, Matheron S, Larrouy L, Damond F, Brun-Vézinet F, Descamps D, et al.: Molecular determinants of HIV-2 R5-X4 tropism in the V3 loop: development of a new genotypic tool. J Infect Dis 2012, 205(1):111-20.
- [69]Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A: With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 2006, 13(12):991-4.
- [70]Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, Schilte C, Chaperot L, Plumas J, Randall RE, Si-Tahar M, et al.: Innate sensing of HIV-infected cells. PLoS Pathog 2011, 7(2):e1001284.
- [71]Avettand-Fenoel V, Damond F, Gueudin M, Matheron S, Mélard A, Collin G, Descamps D, Chaix M-LL, Rouzioux C, Plantier J-CC, et al.: New sensitive one-step real-time duplex PCR method for group A and B HIV-2 RNA load. J Clin Microbiol 2014, 52(8):3017-22.