期刊论文详细信息
Retrovirology
HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells
Olivier Schwartz3  Diane Descamps4  Benoit Visseaux4  Daniela Bruni5  Françoise Porrot2  Ferdinand Roesch1  Diana Ayinde2  Isabel Puigdomenech2  Lise Chauveau1 
[1] Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France;Institut Pasteur, URA CNRS 3015, Virus & Immunity Unit, Paris, France;Vaccine Research Institute, Hôpital Henri Mondor, Créteil, France;AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France;Institut Pasteur, Hepacivirus & Innate Immunity Unit, Paris, France
关键词: Interferon;    CD4+ lymphocytes;    Monocyte-derived dendritic cells;    SAMHD1;    Vpx;    HIV-2;   
Others  :  1132001
DOI  :  10.1186/s12977-014-0131-7
 received in 2014-11-18, accepted in 2014-12-17,  发布年份 2015
PDF
【 摘 要 】

Background

Human Immunodeficiency Virus-type 2 (HIV-2) encodes Vpx that degrades SAMHD1, a cellular restriction factor active in non-dividing cells. HIV-2 replicates in lymphocytes but the susceptibility of monocyte-derived dendritic cells (MDDCs) to in vitro infection remains partly characterized.

Results

Here, we investigated HIV-2 replication in primary CD4+ T lymphocytes, both activated and non-activated, as well as in MDDCs. We focused on the requirement of Vpx for productive HIV-2 infection, using the reference HIV-2 ROD strain, the proviral clone GL-AN, as well as two primary HIV-2 isolates. All HIV-2 strains tested replicated in activated CD4+ T cells. Unstimulated CD4+ T cells were not productively infected by HIV-2, but viral replication was triggered upon lymphocyte activation in a Vpx-dependent manner. In contrast, MDDCs were poorly infected when exposed to HIV-2. HIV-2 particles did not potently fuse with MDDCs and did not lead to efficient viral DNA synthesis, even in the presence of Vpx. Moreover, the HIV-2 strains tested were not efficiently sensed by MDDCs, as evidenced by a lack of MxA induction upon viral exposure. Virion pseudotyping with VSV-G rescued fusion, productive infection and HIV-2 sensing by MDDCs.

Conclusion

Vpx allows the non-productive infection of resting CD4+ T cells, but does not confer HIV-2 with the ability to efficiently infect MDDCs. In these cells, an entry defect prevents viral fusion and reverse transcription independently of SAMHD1. We propose that HIV-2, like HIV-1, does not productively infect MDDCs, possibly to avoid triggering an immune response mediated by these cells.

【 授权许可】

   
2015 Chauveau et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303140904320.pdf 2717KB PDF download
Figure 5. 48KB Image download
Figure 4. 69KB Image download
Figure 3. 82KB Image download
Figure 2. 89KB Image download
Figure 1. 113KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC: Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol 2013, 23(4):221-40.
  • [2]Menendez-Arias L, Alvarez M: Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antivir Res 2014, 102:70-86.
  • [3]van der Loeff MF, Larke N, Kaye S, Berry N, Ariyoshi K, Alabi A, van Tienen C, Leligdowicz A, Sarge-Njie R, da Silva Z, et al.: Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village. Retrovirology 2010, 7:46. BioMed Central Full Text
  • [4]Esbjornsson J, Mansson F, Kvist A, Isberg PE, Nowroozalizadeh S, Biague AJ, da Silva ZJ, Jansson M, Fenyo EM, Norrgren H, et al.: Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. N Engl J Med 2012, 367(3):224-32.
  • [5]Thiebaut R, Matheron S, Taieb A, Brun-Vezinet F, Chene G: Autran B, immunology group of the ACOHIVc: Long-term nonprogressors and elite controllers in the ANRS CO5 HIV-2 cohort. Aids 2011, 25(6):865-7.
  • [6]MacNeil A, Sarr AD, Sankale JL, Meloni ST, Mboup S, Kanki P: Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. J Virol 2007, 81(10):5325-30.
  • [7]Popper SJ, Sarr AD, Travers KU, Gueye-Ndiaye A, Mboup S, Essex ME, Kanki PJ: Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis 1999, 180(4):1116-21.
  • [8]Gottlieb GS, Hawes SE, Kiviat NB, Sow PS: Differences in proviral DNA load between HIV-1-infected and HIV-2-infected patients. AIDS 2008, 22(11):1379-80.
  • [9]Gueudin M, Damond F, Braun J, Taieb A, Lemee V, Plantier JC, Chene G, Matheron S, Brun-Vezinet F, Simon F: Differences in proviral DNA load between HIV-1- and HIV-2-infected patients. AIDS 2008, 22(2):211-5.
  • [10]Michel P, Balde AT, Roussilhon C, Aribot G, Sarthou JL, Gougeon ML: Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with beta2 microglobulin concentration and disease evolution. J Infect Dis 2000, 181(1):64-75.
  • [11]Thiebaut R, Charpentier C, Damond F, Taieb A, Antoine R, Capeau J, Chene G, Collin G, Matheron S, Descamps D, et al.: Association of soluble CD14 and inflammatory biomarkers with HIV-2 disease progression. Clin Infect Dis 2012, 55(10):1417-25.
  • [12]Leligdowicz A, Feldmann J, Jaye A, Cotten M, Dong T, McMichael A, Whittle H, Rowland-Jones S: Direct relationship between virus load and systemic immune activation in HIV-2 infection. J Infect Dis 2010, 201(1):114-22.
  • [13]Cavaleiro R, Tendeiro R, Foxall RB, Soares RS, Baptista AP, Gomes P, Valadas E, Victorino RM, Sousa AE: Monocyte and myeloid dendritic cell activation occurs throughout HIV type 2 infection, an attenuated form of HIV disease. J Infect Dis 2013, 207(11):1730-42.
  • [14]Kanki PJ, Rowland-Jones S: The protective effect of HIV-2 infection: implications for understanding HIV-1 immunity. AIDS (London, England) 2014, 28(7):1065-7.
  • [15]Esbjornsson J, Mansson F, Kvist A, Isberg PE, Nowroozalizadeh S, Biague AJ, da Silva ZJ, Jansson M, Fenyo EM, Norrgren H, et al.: Effect of HIV-2 infection on HIV-1 disease progression and mortality. AIDS 2014, 28(4):614-5.
  • [16]Rodriguez SK, Sarr AD, MacNeil A, Thakore-Meloni S, Gueye-Ndiaye A, Traore I, Dia MC, Mboup S, Kanki PJ: Comparison of heterologous neutralizing antibody responses of human immunodeficiency virus type 1 (HIV-1)- and HIV-2-infected Senegalese patients: distinct patterns of breadth and magnitude distinguish HIV-1 and HIV-2 infections. J Virol 2007, 81(10):5331-8.
  • [17]Shi Y, Brandin E, Vincic E, Jansson M, Blaxhult A, Gyllensten K, Moberg L, Brostrom C, Fenyo EM, Albert J: Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J Gen Virol 2005, 86(Pt 12):3385-96.
  • [18]Kong R, Li H, Georgiev I, Changela A, Bibollet-Ruche F, Decker JM, Rowland-Jones SL, Jaye A, Guan Y, Lewis GK, et al.: Epitope mapping of broadly neutralizing HIV-2 human monoclonal antibodies. J Virol 2012, 86(22):12115-28.
  • [19]Kong R, Li H, Bibollet-Ruche F, Decker JM, Zheng NN, Gottlieb GS, Kiviat NB, Sow PS, Georgiev I, Hahn BH, et al.: Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection. J Virol 2012, 86(2):947-60.
  • [20]Whittle HC, Ariyoshi K, Rowland-Jones S: HIV-2 and T cell recognition. Curr Opin Immunol 1998, 10(4):382-7.
  • [21]Duvall MG, Jaye A, Dong T, Brenchley JM, Alabi AS, Jeffries DJ, van der Sande M, Togun TO, McConkey SJ, Douek DC, et al.: Maintenance of HIV-specific CD4+ T cell help distinguishes HIV-2 from HIV-1 infection. J Immunol 2006, 176(11):6973-81.
  • [22]Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA: Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008, 38(2):350-63.
  • [23]Cordeil S, Nguyen XN, Berger G, Durand S, Ainouze M, Cimarelli A: Evidence for a different susceptibility of primate lentiviruses to type I interferons. J Virol 2013, 87(5):2587-96.
  • [24]Ylinen LM, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ: Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol 2005, 79(18):11580-7.
  • [25]Onyango CO, Leligdowicz A, Yokoyama M, Sato H, Song H, Nakayama EE, Shioda T, de Silva T, Townend J, Jaye A, et al.: HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. Vaccine 2010, 28(Suppl 2):B60-7.
  • [26]Harrison IP, McKnight A: Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2. Virology 2011, 415(1):47-55.
  • [27]Marchant D, Neil SJ, Aubin K, Schmitz C, McKnight A: An envelope-determined, pH-independent endocytic route of viral entry determines the susceptibility of human immunodeficiency virus type 1 (HIV-1) and HIV-2 to Lv2 restriction. J Virol 2005, 79(15):9410-8.
  • [28]Neil SJ: The antiviral activities of tetherin. Curr Top Microbiol Immunol 2013, 371:67-104.
  • [29]Hotter D, Sauter D, Kirchhoff F: Emerging role of the host restriction factor tetherin in viral immune sensing. J Mol Biol 2013, 425(24):4956-64.
  • [30]Marno KM, Ogunkolade BW, Pade C, Oliveira NM, O'Sullivan E, McKnight A: Novel restriction factor RNA-associated early-stage anti-viral factor (REAF) inhibits human and simian immunodeficiency viruses. Retrovirology 2014, 11:3. BioMed Central Full Text
  • [31]Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M: SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 2012, 9:87. BioMed Central Full Text
  • [32]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474(7353):654-7.
  • [33]Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, et al.: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012, 13(3):223-8.
  • [34]Ayinde D, Casartelli N, Schwartz O: Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat Rev Microbiol 2012, 10(10):675-80.
  • [35]Puigdomenech I, Casartelli N, Porrot F, Schwartz O: SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells. J Virol 2013, 87(5):2846-56.
  • [36]Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, et al.: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012, 18(11):1682-7.
  • [37]Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nunez A, et al.: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 2014, 20(8):936-41.
  • [38]Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M: Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell reports 2013, 3(4):1036-43.
  • [39]White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F: The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2013, 13(4):441-51.
  • [40]Welbourn S, Dutta SM, Semmes OJ, Strebel K: Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 2013, 87(21):11516-24.
  • [41]Yu H, Usmani SM, Borch A, Kramer J, Sturzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, et al.: The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 2013, 10:27. BioMed Central Full Text
  • [42]Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, El Marjou A, Lacabaratz C, Lelievre JD, Manel N: The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 2013, 39(6):1132-42.
  • [43]Schaller T, Goujon C, Malim MH: AIDS/HIV. HIV interplay with SAMHD1. Science 2012, 335(6074):1313-4.
  • [44]Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR: A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010, 467(7312):214-7.
  • [45]Manel N, Littman DR: Hiding in plain sight: how HIV evades innate immune responses. Cell 2011, 147(2):271-4.
  • [46]Cheng X, Ratner L: HIV-2 Vpx protein interacts with interferon regulatory factor 5 (IRF5) and inhibits its function. J Biol Chem 2014, 289(13):9146-57.
  • [47]Marchant D, Neil SJ, McKnight A: Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture. J Gen Virol 2006, 87(Pt 2):411-8.
  • [48]Royle CM, Graham DR, Sharma S, Fuchs D, Boasso A: HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. J Immunol 2014, 193(7):3538-48.
  • [49]Guyader M, Emerman M, Montagnier L, Peden K: VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. EMBO J 1989, 8(4):1169-75.
  • [50]Kawamura M, Sakai H, Adachi A: Human immunodeficiency virus Vpx is required for the early phase of replication in peripheral blood mononuclear cells. Microbiol Immunol 1994, 38(11):871-8.
  • [51]Bergamaschi A, Ayinde D, David A, Le Rouzic E, Morel M, Collin G, Descamps D, Damond F, Brun-Vezinet F, Nisole S, et al.: The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol 2009, 83(10):4854-60.
  • [52]Duvall MG, Lore K, Blaak H, Ambrozak DA, Adams WC, Santos K, Geldmacher C, Mascola JR, McMichael AJ, Jaye A, et al.: Dendritic cells are less susceptible to human immunodeficiency virus type 2 (HIV-2) infection than to HIV-1 infection. J Virol 2007, 81(24):13486-98.
  • [53]Haller O, Kochs G: Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2011, 31(1):79-87.
  • [54]Cavrois M, De Noronha C, Greene WC: A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 2002, 20(11):1151-4.
  • [55]Reuter S, Kaumanns P, Buschhorn SB, Dittmar MT: Role of HIV-2 envelope in Lv2-mediated restriction. Virology 2005, 332(1):347-58.
  • [56]Gueudin M, Braun J, Plantier JC, Simon F: HIV-1 and HIV-2 produce different amounts of 2-long terminal repeat circular DNA in vitro. AIDS 2008, 22(18):2543-5.
  • [57]Miller MD, Warmerdam MT, Gaston I, Greene WC, Feinberg MB: The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J Exp Med 1994, 179(1):101-13.
  • [58]Spina CA, Kwoh TJ, Chowers MY, Guatelli JC, Richman DD: The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J Exp Med 1994, 179(1):115-23.
  • [59]Amie SM, Daly MB, Noble E, Schinazi RF, Bambara RA, Kim B: Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. J Biol Chem 2013, 288(28):20683-91.
  • [60]Wu L. Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1. ISRN biochemistry 2013 Jul 7. pii: 728392
  • [61]Boyer PL, Clark PK, Hughes SH: HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol 2012, 86(10):5885-94.
  • [62]Neil SJ, Aasa-Chapman MM, Clapham PR, Nibbs RJ, McKnight A, Weiss RA: The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 2005, 79(15):9618-24.
  • [63]Segura E, Amigorena S: Cross-presentation by human dendritic cell subsets. Immunol Lett 2013, 158(1–2):73-8.
  • [64]Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013, 341(6148):903-6.
  • [65]Calantone N, Wu F, Klase Z, Deleage C, Perkins M, Matsuda K, Thompson EA, Ortiz AM, Vinton CL, Ourmanov I, et al.: Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 2014, 41(3):493-502.
  • [66]Roquebert B, Damond F, Collin G, Matheron S, Peytavin G, Benard A, Campa P, Chene G, Brun-Vezinet F, Descamps D, et al.: HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J Antimicrob Chemother 2008, 62(5):914-20.
  • [67]Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C, et al.: Isolation of a new human retrovirus from West African patients with AIDS. Science 1986, 233(4761):343-6.
  • [68]Visseaux B, Hurtado-Nedelec M, Charpentier C, Collin G, Storto A, Matheron S, Larrouy L, Damond F, Brun-Vézinet F, Descamps D, et al.: Molecular determinants of HIV-2 R5-X4 tropism in the V3 loop: development of a new genotypic tool. J Infect Dis 2012, 205(1):111-20.
  • [69]Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A: With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 2006, 13(12):991-4.
  • [70]Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, Schilte C, Chaperot L, Plumas J, Randall RE, Si-Tahar M, et al.: Innate sensing of HIV-infected cells. PLoS Pathog 2011, 7(2):e1001284.
  • [71]Avettand-Fenoel V, Damond F, Gueudin M, Matheron S, Mélard A, Collin G, Descamps D, Chaix M-LL, Rouzioux C, Plantier J-CC, et al.: New sensitive one-step real-time duplex PCR method for group A and B HIV-2 RNA load. J Clin Microbiol 2014, 52(8):3017-22.
  文献评价指标  
  下载次数:40次 浏览次数:4次