期刊论文详细信息
Neural Development
Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype
Russell N. Van Gelder1  Maxwell H. Turner1  Adam Bleckert1  Timothy J. Sexton1 
[1] Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle 98195, WA, USA
关键词: Type 1;    M4;    Adaptation;    Melanopsin;    ipRGCs;    Intrinsically photosensitive retinal ganglion cells;   
Others  :  1220771
DOI  :  10.1186/s13064-015-0042-x
 received in 2015-01-05, accepted in 2015-06-03,  发布年份 2015
PDF
【 摘 要 】

Background

Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30.

Results

Melanopsin-positive cell density decreases by 17 % between post-natal days 8 and 15 and by 25 % between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes – Types I-III – have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology.

Conclusions

Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose melanopsin expression in development. These cells constitute a unique morphologic and physiologic class of ipRGCs functioning early in postnatal development.

【 授权许可】

   
2015 Sexton et al.

【 预 览 】
附件列表
Files Size Format View
20150724082712593.pdf 2285KB PDF download
Fig. 8. 72KB Image download
Fig. 7. 67KB Image download
Fig. 6. 72KB Image download
Fig. 5. 84KB Image download
Fig. 4. 81KB Image download
Fig. 3. 68KB Image download
Fig. 2. 30KB Image download
Fig. 1. 139KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, et al.: Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003, 424:76-81.
  • [2]Sernagor E, Eglen SJ, Wong RO: Development of retinal ganglion cell structure and function. Prog Retin Eye Res 2001, 20:139-74.
  • [3]Fisher LJ: Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. J Comp Neurol 1979, 187:359-72.
  • [4]Westenberg IS: First detected eye-opening in albino vs. black coisogenic littermate mice. Behav Genet 1981, 11:281-7.
  • [5]Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE, et al.: Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 2005, 48:987-99.
  • [6]Fahrenkrug J, Nielsen HS, Hannibal J: Expression of melanopsin during development of the rat retina. Neuroreport 2004, 15:781-4.
  • [7]Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, et al.: Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 2005, 15:1099-107.
  • [8]Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, et al.: A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 2013, 494:243-6.
  • [9]Renna JM, Weng S, Berson DM: Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 2011, 14:827-9.
  • [10]Kirkby LA, Feller MB: Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits. Proc Natl Acad Sci U S A 2013, 110:12090-5.
  • [11]Johnson J, Wu V, Donovan M, Majumdar S, Renteria RC, Porco T, et al.: Melanopsin-dependent light avoidance in neonatal mice. Proc Natl Acad Sci U S A 2010, 107:17374-8.
  • [12]Delwig A, Logan AM, Copenhagen DR, Ahn AH: Light evokes melanopsin-dependent vocalization and neural activation associated with aversive experience in neonatal mice. PLoS One 2012, 7:e43787.
  • [13]Schmidt TM, Taniguchi K, Kofuji P: Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 2008, 100:371-84.
  • [14]Wong RC, Cloherty SL, Ibbotson MR, O’Brien BJ: Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. J Neurophysiol 2012, 108:2008-23.
  • [15]Chen SK, Badea TC, Hattar S: Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 2011, 476:92-5.
  • [16]Hughes S, Watson TS, Foster RG, Peirson SN, Hankins MW: Nonuniform distribution and spectral tuning of photosensitive retinal ganglion cells of the mouse retina. Curr Biol 2013, 23:1696-701.
  • [17]Ruggiero L, Allen CN, Lane Brown R, Robinson DW: The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 2009, 29:359-67.
  • [18]Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong RO: Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol 2014, 24:310-5.
  • [19]Schmidt TM, Alam NM, Chen S, Kofuji P, Li W, Prusky GT, et al.: A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 2014, 82:781-8.
  • [20]Estevez ME, Fogerson PM, Ilardi MC, Borghuis BG, Chan E, Weng S, et al.: Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 2012, 32:13608-20.
  • [21]Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, et al.: Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 2010, 67:49-60.
  • [22]Berson DM, Dunn FA, Takao M: Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295:1070-3.
  • [23]Wong KY: A retinal ganglion cell that can signal irradiance continuously for 10 h. J Neurosci Off J Soc Neurosci 2012, 32:11478-85.
  • [24]Sexton TJ, Golczak M, Palczewski K, Van Gelder RN: Melanopsin is highly resistant to light and chemical bleaching in vivo. J Biol Chem 2012, 287:20888-97.
  • [25]Schmidt TM, Kofuji P: Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 2009, 29:476-82.
  • [26]Sexton T, Buhr E, Van Gelder RN: Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem 2012, 287:1649-56.
  • [27]Hu C, Hill DD, Wong KY: Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. J Neurophysiol 2013, 109:1876-89.
  • [28]Berson DM, Castrucci AM, Provencio I: Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol 2010, 518:2405-22.
  • [29]Do MT, Yau KW: Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci U S A 2013, 110:7470-5.
  • [30]Matsuyama T, Yamashita T, Imamoto Y, Shichida Y: Photochemical properties of mammalian melanopsin. Biochemistry 2012, 51:5454-62.
  • [31]Wong KY, Dunn FA, Berson DM: Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 2005, 48:1001-10.
  • [32]Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A: Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 2011, 31:16094-101.
  • [33]Peichl L, Ott H, Boycott BB: Alpha ganglion cells in mammalian retinae. Proc R Soc Lond B Biol Sci 1987, 231:169-97.
  • [34]Coombs J, van der List D, Wang GY, Chalupa LM: Morphological properties of mouse retinal ganglion cells. Neuroscience 2006, 140:123-36.
  • [35]Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, et al.: Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 2008, 59:425-38.
  • [36]Wong WT, Myhr KL, Miller ED, Wong RO: Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J Neurosci Off J Soc Neurosci 2000, 20:351-60.
  • [37]Symphony Data Acquisition System. http://symphony-das.github.io webcite
  • [38]Stage. http://github.com/cafarm/Stage webcite
  文献评价指标  
  下载次数:60次 浏览次数:24次