Retrovirology | |
MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1 | |
Felipe Diaz-Griffero2  Alberto Brandariz-Nuñez1  Edward M Campbell3  Adarsh Dharan3  Daniel A de Souza Aranha Vieira1  Bianca Schulte1  Tommy E White1  Thomas Fricke1  | |
[1] Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx 10461, NY, USA;Albert Einstein College of Medicine, 1301 Morris Park – Price Center 501, Bronx 10461, NY, USA;Department of Microbiology and Immunology, Loyola University, Chicago 60153, IL, USA | |
关键词: Oligomerization; Binding; IFN-α; Core; Capsid; Uncoating; HIV-1; MxB; | |
Others : 1159831 DOI : 10.1186/s12977-014-0068-x |
|
received in 2014-07-25, accepted in 2014-07-30, 发布年份 2014 | |
【 摘 要 】
Background
The IFN-α-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Genetic evidence suggested that capsid is the viral determinant for restriction by MxB. This work explores the ability of MxB to bind to the HIV-1 core, and the role of capsid-binding in restriction.
Results
We showed that MxB binds to the HIV-1 core and that this interaction leads to inhibition of the uncoating process of HIV-1. These results identify MxB as an endogenously expressed protein with the ability to inhibit HIV-1 uncoating. In addition, we found that a benzimidazole-based compound known to have a binding pocket on the surface of the HIV-1 capsid prevents the binding of MxB to capsid. The use of this small-molecule identified the MxB binding region on the surface of the HIV-1 core. Domain mapping experiments revealed the following requirements for restriction: 1) MxB binding to the HIV-1 capsid, which requires the 20 N-terminal amino acids, and 2) oligomerization of MxB, which is mediated by the C-terminal domain provides the avidity for the interaction of MxB with the HIV-1 core.
Conclusions
Overall our work establishes that MxB binds to the HIV-1 core and inhibits the uncoating process of HIV-1. Moreover, we demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization.
【 授权许可】
2014 Fricke et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150410080333278.pdf | 2916KB | download | |
Figure 6. | 32KB | Image | download |
Figure 5. | 40KB | Image | download |
Figure 4. | 57KB | Image | download |
Figure 3. | 68KB | Image | download |
Figure 2. | 83KB | Image | download |
Figure 1. | 46KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Mitchell PS, Emerman M, Malik HS: An evolutionary perspective on the broad antiviral specificity of MxA. Curr Opin Microbiol 2013, 16:493-499.
- [2]Haller O, Kochs G: Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2011, 31:79-87.
- [3]Melén K, Keskinen P, Ronni T, Sareneva T, Lounatmaa K, Julkunen I: Human MxB protein, an interferon-alpha-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope. J Biol Chem 1996, 271:23478-23486.
- [4]Aebi M, Fäh J, Hurt N, Samuel CE, Thomis D, Bazzigher L, Pavlovic J, Haller O, Staeheli P: cDNA structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol 1989, 9:5062-5072.
- [5]Haller O: Dynamins are forever: MxB inhibits HIV-1. Cell Host Microbe 2013, 14:371-373.
- [6]Haller O, Gao S, Malsburg von der A, Daumke O, Kochs G: Dynamin-like MxA GTPase: structural insights into oligomerization and implications for antiviral activity. J Biol Chem 2010, 285:28419-28424.
- [7]Faelber K, Gao S, Held M, Posor Y, Haucke V, Noé F, Daumke O: Oligomerization of dynamin superfamily proteins in health and disease. Prog Mol Biol Transl Sci 2013, 117:411-443.
- [8]Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C: The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 2013, 14:398-410.
- [9]Morlot S, Roux A: Mechanics of dynamin-mediated membrane fission. Annu Rev Biophys 2013, 42:629-649.
- [10]McNew JA, Sondermann H, Lee T, Stern M, Brandizzi F: GTP-dependent membrane fusion. Annu Rev Cell Dev Biol 2013, 29:529-550.
- [11]Gao S, Malsburg von der A, Paeschke S, Behlke J, Haller O, Kochs G, Daumke O: Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 2010, 465:502-506.
- [12]Pavlovic J, Zürcher T, Haller O, Staeheli P: Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol 1990, 64:3370-3375.
- [13]Xiao H, Killip MJ, Staeheli P, Randall RE, Jackson D: The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. J Virol 2013, 87:13053-13058.
- [14]Matzinger SR, Carroll TD, Dutra JC, Ma Z-M, Miller CJ: Myxovirus resistance gene A (MxA) expression suppresses influenza A virus replication in alpha interferon-treated primate cells. J Virol 2013, 87:1150-1158.
- [15]Frese M, Kochs G, Meier-Dieter U, Siebler J, Haller O: Human MxA protein inhibits tick-borne Thogoto virus but not Dhori virus. J Virol 1995, 69:3904-3909.
- [16]Netherton CL, Simpson J, Haller O, Wileman TE, Takamatsu H-H, Monaghan P, Taylor G: Inhibition of a large double-stranded DNA virus by MxA protein. J Virol 2009, 83:2310-2320.
- [17]Li N, Zhang L, Chen L, Feng W, Xu Y, Chen F, Liu X, Chen Z, Liu W: MxA inhibits hepatitis B virus replication by interaction with hepatitis B core antigen. Hepatology 2012, 56:803-811.
- [18]Kochs G, Janzen C, Hohenberg H, Haller O: Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc Natl Acad Sci U S A 2002, 99:3153-3158.
- [19]Reichelt M, Stertz S, Krijnse-Locker J, Haller O, Kochs G: Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic 2004, 5:772-784.
- [20]Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM: A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472:481-485.
- [21]Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC, Schaller T, Hué S, Barclay WS, Schulz R, Malim MH: Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013, 502:559-562.
- [22]Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD: MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 2013, 502:563-566.
- [23]Diaz-Griffero F, Perron M, McGee-Estrada K, Hanna R, Maillard PV, Trono D, Sodroski J: A human TRIM5α B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 2008, 378:233-242.
- [24]Lienlaf M, Hayashi F, Di Nunzio F, Tochio N, Kigawa T, Yokoyama S, Diaz-Griffero F: Contribution of E3-Ubiquitin Ligase activity to HIV-1 restriction by TRIM5 rh: structure of the RING domain of TRIM5. J Virol 2011, 85:8725-8737.
- [25]Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J: Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 2006, 103:5514-5519.
- [26]Yang Y, Brandariz-Nuñez A, Fricke T, Ivanov DN, Sarnak Z, Diaz-Griffero F: Binding of the rhesus TRIM5α PRYSPRY domain to capsid is necessary but not sufficient for HIV-1 restriction. Virology 2014, 448:217-228.
- [27]Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI: Assembly and analysis of conical models for the HIV-1 core. Science 1999, 283:80-83.
- [28]Yang Y, Luban J, Diaz-Griffero F: The fate of HIV-1 capsid: a biochemical assay for HIV-1 uncoating. Methods Mol Biol 2014, 1087:29-36.
- [29]Diaz-Griffero F, Vandegraaff N, Li Y, McGee-Estrada K, Stremlau M, Welikala S, Si Z, Engelman A, Sodroski J: Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology 2006, 351:404-419.
- [30]Campbell EM, Perez O, Melar M, Hope TJ: Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology 2007, 360:286-293.
- [31]Diaz-Griffero F, Hoschander SA, Brojatsch J: Endocytosis is a critical step in entry of subgroup B avian leukosis viruses. J Virol 2002, 76:12866-12876.
- [32]Diaz-Griffero F, Kar A, Lee M, Stremlau M, Poeschla E, Sodroski J: Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. Virology 2007, 369:400-410.
- [33]Fricke T, Valle-Casuso JC, White TE, Brandariz-Nuñez A, Bosche WJ, Reszka N, Gorelick R, Diaz-Griffero F: The ability of TNPO3-depleted cells to inhibit HIV-1 infection requires CPSF6. Retrovirology 2013, 10:46. BioMed Central Full Text
- [34]De Iaco A, Santoni F, Vannier A, Guipponi M, Antonarakis S, Luban J: TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology 2013, 10:20. BioMed Central Full Text
- [35]Fricke T, Brandariz-Nunez A, Wang X, Smith AB, Diaz-Griffero F: Human cytosolic extracts stabilize the HIV-1 core. J Virol 2013, 87:10587-10597.
- [36]Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R, Cao J, Ciaramella G, Isaacson J, Jackson L, Hunt R, Kjerrstrom A, Nieman JA, Patick AK, Perros M, Scott AD, Whitby K, Wu H, Butler SL: HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 2010, 6:e1001220.
- [37]Shi J, Zhou J, Shah VB, Aiken C, Whitby K: Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 2010, 85:542-549.
- [38]Lamorte L, Titolo S, Lemke CT, Goudreau N, Mercier JF, Wardrop E, Shah VB, Schwedler Von UK, Langelier C, Banik SSR, Aiken C, Sundquist WI, Mason SW: Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes. Antimicrob Agents Chemother 2013, 57:4622-4631.
- [39]Kelly BN, Kyere S, Kinde I, Tang C, Howard BR, Robinson H, Sundquist WI, Summers MF, Hill CP: Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein. J Mol Biol 2007, 373:355-366.
- [40]Tang C, Loeliger E, Kinde I, Kyere S, Mayo K, Barklis E, Sun Y, Huang M, Summers MF: Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 2003, 327:1013-1020.
- [41]Goudreau N, Lemke CT, Faucher A-M, Grand-Maître C, Goulet S, Lacoste J-E, Rancourt J, Malenfant E, Mercier J-F, Titolo S, Mason SW: Novel inhibitor binding site discovery on HIV-1 capsid N-terminal domain by NMR and X-ray crystallography. ACS Chem Biol 2013, 8:1074-1082.
- [42]Lemke CT, Titolo S, Goudreau N, Faucher A-M, Mason SW, Bonneau P: A novel inhibitor-binding site on the HIV-1 capsid N-terminal domain leads to improved crystallization via compound-mediated dimerization. Acta Crystallogr D Biol Crystallogr 2013, 69:1115-1123.
- [43]Sticht J, Humbert M, Findlow S, Bodem J, Muller B, Dietrich U, Werner J, Krausslich HG: A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005, 12:671-677.
- [44]Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K, KewalRamani VN, Chin JW, Towers GJ, James LC: CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog 2012, 8:e1002896.
- [45]Schumacher B, Staeheli P: Domains mediating intramolecular folding and oligomerization of MxA GTPase. J Biol Chem 1998, 273:28365-28370.
- [46]Kochs G, Trost M, Janzen C, Haller O: MxA GTPase: oligomerization and GTP-dependent interaction with viral RNP target structures. Methods 1998, 15:255-263.
- [47]Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, Watanabe S, Kigawa T, Yokoyama S, Aiken C, Diaz-Griffero F: RING domain mutations uncouple TRIM5 Restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 2012, 86:1717-1727.
- [48]Yang Y, Fricke T, Diaz-Griffero F: Inhibition of reverse transcriptase activity increases Stability of the HIV-1 core. J Virol 2012, 87:683-687.
- [49]Arfi V, Lienard J, Nguyen XN, Berger G, Rigal D, Darlix JL, Cimarelli A: Characterization of the behavior of functional viral genomes during the early steps of human immunodeficiency virus type 1 infection. J Virol 2009, 83:7524-7535.
- [50]Berger G, Durand S, Fargier G, Nguyen X-N, Cordeil S, Bouaziz S, Muriaux D, Darlix J-L, Cimarelli A: APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 2011, 7:e1002221.
- [51]Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH, Unutmaz D, Engelman A, KewalRamani VN: Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 2010, 7:221-233.
- [52]White TE, Brandariz-Nuñez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F: The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2013, 13:441-451.