期刊论文详细信息
Retrovirology
The cooperative function of arginine residues in the Prototype Foamy Virus Gag C-terminus mediates viral and cellular RNA encapsidation
Dirk Lindemann1  Winfried Weissenhorn2  Gregory Effantin2  Nicole Stanke1  Juliane Reh1  Erik Müllers3  Martin V Hamann1 
[1] CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden, 01307, Germany;CNRS, UVHCI, Grenoble, F-38000, France;Present address: Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
关键词: Assembly;    Gag;    RNA packaging;    Foamy virus;   
Others  :  1152283
DOI  :  10.1186/s12977-014-0087-7
 received in 2014-04-16, accepted in 2014-09-23,  发布年份 2014
PDF
【 摘 要 】

Background

One unique feature of the foamy virus (FV) capsid protein Gag is the absence of Cys-His motifs, which in orthoretroviruses are irreplaceable for multitude functions including viral RNA genome recognition and packaging. Instead, FV Gag contains glycine-arginine-rich (GR) sequences at its C-terminus. In case of prototype FV (PFV) these are historically grouped in three boxes, which have been shown to play essential functions in genome reverse transcription, virion infectivity and particle morphogenesis. Additional functions for RNA packaging and Pol encapsidation were suggested, but have not been conclusively addressed.

Results

Here we show that released wild type PFV particles, like orthoretroviruses, contain various cellular RNAs in addition to viral genome. Unlike orthoretroviruses, the content of selected cellular RNAs in capsids of PFV vector particles was not altered by viral genome encapsidation. Deletion of individual GR boxes had only minor negative effects (2 to 4-fold) on viral and cellular RNA encapsidation over a wide range of cellular Gag to viral genome ratios examined. Only the concurrent deletion of all three PFV Gag GR boxes, or the substitution of multiple arginine residues residing in the C-terminal GR box region by alanine, abolished both viral and cellular RNA encapsidation (>50 to >3,000-fold reduced), independent of the viral production system used. Consequently, those mutants also lacked detectable amounts of encapsidated Pol and were non-infectious. In contrast, particle release was reduced to a much lower extent (3 to 20-fold).

Conclusions

Taken together, our data provides the first identification of a full-length PFV Gag mutant devoid in genome packaging and the first report of cellular RNA encapsidation into PFV particles. Our results suggest that the cooperative action of C-terminal clustered positively charged residues, present in all FV Gag proteins, is the main viral protein determinant for viral and cellular RNA encapsidation. The viral genome independent efficiency of cellular RNA encapsidation suggests differential packaging mechanisms for both types of RNAs. Finally, this study indicates that analogous to orthoretroviruses, Gag ¿ nucleic acid interactions are required for FV capsid assembly and efficient particle release.

【 授权许可】

   
2014 Hamann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406152937603.pdf 2642KB PDF download
Figure 6. 124KB Image download
Figure 5. 49KB Image download
Figure 4. 94KB Image download
Figure 3. 102KB Image download
Figure 2. 113KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Goff S: Retroviridae. In Fields Virology. Volume 2. 6th edition. Edited by Knipe DM, Howley PM. Lippincott Williams & Wikins, a Wolters Kluwer business, Philadelphia; 2013.
  • [2]D¿Souza V, Summers MF: How retroviruses select their genomes. Nat Rev Microbiol 2005, 3:643-655.
  • [3]Jouvenet N, Laine S, Pessel-Vivares L, Mougel M: Cell biology of retroviral RNA packaging. RNA Biol 2011, 8:572-580.
  • [4]Lu K, Heng X, Summers MF: Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011, 410:609-633.
  • [5]Rein A, Datta SA, Jones CP, Musier-Forsyth K: Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci 2011, 36:373-380.
  • [6]Schwartz MD, Fiore D, Panganiban AT: Distinct functions and requirements for the Cys-His boxes of the human immunodeficiency virus type 1 nucleocapsid protein during RNA encapsidation and replication. J Virol 1997, 71:9295-9305.
  • [7]Johnson SF, Telesnitsky A: Retroviral RNA dimerization and packaging: the what, how, when, where, and why. PLoS Pathog 2010, 6:e1001007.
  • [8]Rulli SJ Jr, Hibbert CS, Mirro J, Pederson T, Biswal S, Rein A: Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 2007, 81:6623-6631.
  • [9]Jewell NA, Mansky LM: In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J Gen Virol 2000, 81:1889-1899.
  • [10]Glebe D, Bremer CM: The molecular virology of hepatitis B virus. Semin Liver Dis 2013, 33:103-112.
  • [11]Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem D: Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription. Nature 1990, 344:552-555.
  • [12]Bartenschlager R, Junker-Niepmann M, Schaller H: The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol 1990, 64:5324-5332.
  • [13]Porterfield JZ, Dhason MS, Loeb DD, Nassal M, Stray SJ, Zlotnick A: Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J Virol 2010, 84:7174-7184.
  • [14]Lan YT, Li J, Liao W, Ou J: Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology 1999, 259:342-348.
  • [15]Rethwilm A, Lindemann D: Foamy Viruses. In Fields Virology. Volume 2. 6th edition. Edited by Knipe DM, Howley PM. Lippincott Williams & Wikins, a Wolters Kluwer business, Philadelphia; 2013:1613-1632.
  • [16]Lindemann D, Pietschmann T, Picard-Maureau M, Berg A, Heinkelein M, Thurow J, Knaus P, Zentgraf H, Rethwilm A: A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 2001, 75:5762-5771.
  • [17]Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML: Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 1996, 271:1579-1582.
  • [18]Müllers E: The foamy virus Gag proteins: what makes them different? Viruses 2013, 5:1023-1041.
  • [19]Yu SF, Edelmann K, Strong RK, Moebes A, Rethwilm A, Linial ML: The carboxyl terminus of the human foamy virus Gag protein contains separable nucleic acid binding and nuclear transport domains. J Virol 1996, 70:8255-8262.
  • [20]Müllers E, Uhlig T, Stirnnagel K, Fiebig U, Zentgraf H, Lindemann D: Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis. J Virol 2011, 85:1452-1463.
  • [21]Berkowitz R, Fisher J, Goff SP: RNA packaging. Curr Top Microbiol Immunol 1996, 214:177-218.
  • [22]Stenbak CR, Linial ML: Role of the C terminus of foamy virus Gag in RNA packaging and Pol expression. J Virol 2004, 78:9423-9430.
  • [23]Lee EG, Linial ML: The C terminus of foamy retrovirus Gag contains determinants for encapsidation of Pol protein into virions. J Virol 2008, 82:10803-10810.
  • [24]Linial ML, Eastman SW: Particle assembly and genome packaging. Curr Top Microbiol Immunol 2003, 277:89-110.
  • [25]Saib A: Non-primate foamy viruses. Curr Top Microbiol Immunol 2003, 277:197-211.
  • [26]Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J, Lindemann D, Rethwilm A: Improved primate foamy virus vectors and packaging constructs. J Virol 2002, 76:3774-3783.
  • [27]Heinkelein M, Leurs C, Rammling M, Peters K, Hanenberg H, Rethwilm A: Pregenomic RNA is required for efficient incorporation of pol polyprotein into foamy virus capsids. J Virol 2002, 76:10069-10073.
  • [28]Peters K, Wiktorowicz T, Heinkelein M, Rethwilm A: RNA and protein requirements for incorporation of the pol protein into foamy virus particles. J Virol 2005, 79:7005-7013.
  • [29]Stirnnagel K, Lüftenegger D, Stange A, Swiersy A, Müllers E, Reh J, Stanke N, Grosse A, Chiantia S, Keller H, Schwille P, Hanenberg H, Zentgraf H, Lindemann D: Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology 2010, 7:45. BioMed Central Full Text
  • [30]Swiersy A, Wiek C, Reh J, Zentgraf H, Lindemann D: Orthoretroviral-like Prototype Foamy Virus Gag-Pol expression is compatible with viral replication. Retrovirology 2011, 8:66. BioMed Central Full Text
  • [31]Hütter S, Müllers E, Stanke N, Reh J, Lindemann D: Prototype Foamy Virus Protease Activity Is Essential for Intraparticle Reverse Transcription Initiation but Not Absolutely Required for Uncoating upon Host Cell Entry. J Virol 2013, 87:3163-3176.
  • [32]Tobaly-Tapiero J, Bittoun P, Lehmann-Che J, Delelis O, Giron ML, de The H, Saib A: Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 2008, 9:1717-1727.
  • [33]Müllers E, Stirnnagel K, Kaulfuss S, Lindemann D: Prototype Foamy Virus Gag Nuclear Localization: a Novel Pathway among Retroviruses. J Virol 2011, 85:9276-9285.
  • [34]Schneider WM, Brzezinski JD, Aiyer S, Malani N, Gyuricza M, Bushman FD, Roth MJ: Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag. Proc Natl Acad Sci U S A 2013, 110:9487-9492.
  • [35]Enssle J, Fischer N, Moebes A, Mauer B, Smola U, Rethwilm A: Carboxy-terminal cleavage of the human foamy virus Gag precursor molecule is an essential step in the viral life cycle. J Virol 1997, 71:7312-7317.
  • [36]Lee EG, Linial ML: Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects. Virology 2006, 347:226-233.
  • [37]Muriaux D, Costes S, Nagashima K, Mirro J, Cho E, Lockett S, Rein A: Role of murine leukemia virus nucleocapsid protein in virus assembly. J Virol 2004, 78:12378-12385.
  • [38]Reh J, Stange A, Götz A, Rönitz M, Grosse A, Lindemann D: An N-terminal domain helical motif of Prototype Foamy Virus Gag with dual functions essential for particle egress and viral infectivity. Retrovirology 2013, 10:45. BioMed Central Full Text
  • [39]Cartellieri M, Herchenröder O, Rudolph W, Heinkelein M, Lindemann D, Zentgraf H, Rethwilm A: N-terminal gag domain required for foamy virus particle assembly and export. J Virol 2005, 79:12464-12476.
  • [40]Burniston MT, Cimarelli A, Colgan J, Curtis SP, Luban J: Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol 1999, 73:8527-8540.
  • [41]Dorfman T, Luban J, Goff SP, Haseltine WA, Gottlinger HG: Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 1993, 67:6159-6169.
  • [42]Campbell S, Vogt VM: Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 1995, 69:6487-6497.
  • [43]Zuber G, McDermott J, Karanjia S, Zhao W, Schmid MF, Barklis E: Assembly of retrovirus capsid-nucleocapsid proteins in the presence of membranes or RNA. J Virol 2000, 74:7431-7441.
  • [44]Muriaux D, Mirro J, Harvin D, Rein A: RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 2001, 98:5246-5251.
  • [45]Goldstone DC, Flower TG, Ball NJ, Sanz-Ramos M, Yap MW, Ogrodowicz RW, Stanke N, Reh J, Lindemann D, Stoye JP, Taylor IA: A Unique Spumavirus Gag N-terminal Domain with Functional Properties of Orthoretroviral Matrix and Capsid. PLoS Pathog 2013, 9:e1003376.
  • [46]Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Müller JG, Rethwilm A: Foamy virus particle formation. J Virol 1998, 72:1610-1615.
  • [47]Baldwin DN, Linial ML: The roles of Pol and Env in the assembly pathway of human foamy virus. J Virol 1998, 72:3658-3665.
  • [48]DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP: Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 1987, 7:379-387.
  • [49]Shooter RA, Gey GO: Studies of the mineral requirements of mammalian cells. Br J Exp Pathol 1952, 33:98-103.
  • [50]Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB: Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 1974, 33:1027-1033.
  • [51]Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A: Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 1997, 71:7305-7311.
  • [52]Heinkelein M, Pietschmann T, Jarmy G, Dressler M, Imrich H, Thurow J, Lindemann D, Bock M, Moebes A, Roy J, Herchenröder O, Rethwilm A: Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. Embo J 2000, 19:3436-3445.
  • [53]Hamann MV, Stanke N, Müllers E, Stirnnagel K, Hütter S, Artegiani B: Bragado Alonso S, Calegari F, Lindemann D: Efficient Transient Genetic Manipulation In Vitro and In Vivo by Prototype Foamy Virus-mediated Nonviral RNA Transfer. Mol Ther 2014, 22:1460-1471.
  • [54]Mannigel I, Stange A, Zentgraf H, Lindemann D: Correct capsid assembly mediated by a conserved YXXLGL motif in prototype foamy virus Gag is essential for infectivity and reverse transcription of the viral genome. J Virol 2007, 81:3317-3326.
  • [55]Ho YP, Schnabel V, Swiersy A, Stirnnagel K, Lindemann D: A small-molecule-controlled system for efficient pseudotyping of prototype foamy virus vectors. Mol Ther 2012, 20:1167-1176.
  • [56]Stange A, Lüftenegger D, Reh J, Weissenhorn W, Lindemann D: Subviral particle release determinants of prototype foamy virus. J Virol 2008, 82:9858-9869.
  • [57]Imrich H, Heinkelein M, Herchenröder O, Rethwilm A: Primate foamy virus Pol proteins are imported into the nucleus. J Gen Virol 2000, 81:2941-2947.
  文献评价指标  
  下载次数:41次 浏览次数:22次